
26

Automatic Fréchet Differentiation for the Numerical Solution
of Boundary-Value Problems

ASGEIR BIRKISSON, University of Oxford
TOBIN A. DRISCOLL, University of Delaware

A new solver for nonlinear boundary-value problems (BVPs) in MATLAB is presented, based on the Chebfun
software system for representing functions and operators automatically as numerical objects. The solver im-
plements Newton’s method in function space, where instead of the usual Jacobian matrices, the derivatives
involved are Fréchet derivatives. A major novelty of this approach is the application of automatic differ-
entiation (AD) techniques to compute the operator-valued Fréchet derivatives in the continuous context.
Other novelties include the use of anonymous functions and numbering of each variable to enable a recur-
sive, delayed evaluation of derivatives with forward mode AD. The AD techniques are applied within a new
Chebfun class called chebop which allows users to set up and solve nonlinear BVPs, both scalar and systems
of coupled equations, in a few lines of code, using the “nonlinear backslash” operator (\). This framework
enables one to study the behaviour of Newton’s method in function space.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Quadrature and Numerical Differentia-
tion—Automatic differentiation; G.1.7 [Numerical Analysis]: Ordinary Differential Equations—Boundary
value problems.

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Chebfun, Newton’s method in function space, linearization of boundary-
value problems, object-oriented MATLAB.

ACM Reference Format:
Birkisson, A. and Driscoll, T. A. 2012. Automatic Fréchet diffentation for the numerical solution of boundary-
value problems. ACM Trans. Math. Softw. 38, 4, Article 26 (August 2012), 29 pages.
DOI = 10.1145/2331130.2331134 http://doi.acm.org/10.1145/2331130.2331134

1. INTRODUCTION

Automatic differentiation (or algorithmic differentiation—AD in both cases) provides
the ability to differentiate functions without truncation error. AD starts from numeri-
cal values and produces numerical derivatives, gradients, and Jacobian matrices that
are approximate only in the sense of roundoff. The efficient implementation of AD is
described in detail in the excellent book by Griewank and Walther [2008], and we give
a brief overview for our purposes in Section 3.

A typical use of AD is to remove the need for handwritten code or difference-based
approximation methods to produce the Jacobian matrices within a Newton iteration

A. Birkisson is supported in this work by UK EPSRC Grant EP/E045847 and a Sloane Robinson Foundation
Graduate Award associated with Lincoln College. T. A. Driscoll is supported in this work by UK EPSRC
Grant EP/E045847.
Authors’ addresses: A. Birkisson, University of Oxford Mathematical Institute, 24-29 St Giles, Oxford,
OX1 3LB England; email: birkisson@maths.ox.ac.uk; T. A. Driscoll, Department of Mathematical Sciences,
University of Delaware, Newark, DE 19716; email: driscoll@udel.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permit-
ted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of
this work in other works requires prior specific permission and/or a fee. Permissions may be requested from
the Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permission@acm.org.
c© 2012 ACM 0098-3500/2012/08-ART26 $15.00

DOI 10.1145/2331130.2331134 http://doi.acm.org/10.1145/2331130.2331134

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:2 A. Birkisson and T. A. Driscoll

for a nonlinear system of equations. In the special case of a nonlinear system aris-
ing from discretization of a nonlinear boundary-value problem this is the approach
taken, for example, by the MATLAB function bvp4cAD [Shampine et al. 2006], which
overloads MATLAB’s built-in boundary-value problem solver bvp4c [Kierzenka and
Shampine 2001]. Instead of using finite difference schemes to calculate Jacobian ma-
trices, bvp4cAD uses AD to supply high accuracy partial derivatives, increasing the ro-
bustness and (at least in some cases) the efficiency of the solver. Interestingly, bvp4cAD
finds a very accurate Jacobian for a nonlinear system of algebraic equations that is
itself a discretization of the original boundary value problem and thus has incurred a
truncation error. Moreover, the computational expense of AD becomes very significant
as the number of system variables, that is, the total discretization size, becomes large.

We can switch the order of steps and linearize before discretization of the deriva-
tives. The Newton iteration has a clear generalization to this context, variously re-
ferred to as Newton’s method in function space or quasilinearization [Ascher et al.
1995; Deuflhard 2006]. The iterates of the function space version are updated through
the solution of successive linear boundary-value problems. Each linear update problem
is described by the Fréchet derivatives of the original BVP, linear operators analogous
to Jacobian matrices [Hutson et al. 2005]. Under suitable conditions and with a suffi-
ciently good initial guess u0, the Newton iterates can be expected to converge quadrat-
ically to a solution of the original BVP. This process is described in more detail in
Section 2.

Although conceptually quite different, Fréchet differentiation and differentiation
of a function with respect to a real variable both rely on familiar algorithmic rules
from calculus (e.g., the chain rule). Thus, Fréchet derivatives can in principle be pro-
duced through AD techniques. The idea is appealing in part because it produces a
linearization in which the relevant number of variables is that of the original continu-
ous system, not its discretization, and therefore the technique is not susceptible to the
large-scale inefficiency of AD.

In this work we describe introducing the Fréchet AD idea into the Chebfun
software system, which is a free downloadable add-on for MATLAB [Trefethen et al.
2011]. Chebfun uses the fast convergence and fast algorithms associated with the
(piecewise) Chebyshev series representation of functions to provide the illusion of
symbolic manipulation of their numerical representations. While each function is ul-
timately represented by a discretization of finite length by interpolants in suitably
rescaled Chebyshev points

cos(jπ/n), 0 ≤ j ≤ n,

the length (n) is chosen automatically and dynamically so that the system can rep-
resent and manipulate most functions essentially to roundoff error with great speed.
The chebfun method length returns the number of Chebyshev points used to represent
a function, which is one more than the degree of the polynomial interpolant. Major op-
erations available include rootfinding, integration, and differentiation.

Within Chebfun is an object class that allows one to create and manipulate linear
operators on functions [Driscoll et al. 2008]. Each linear operator maintains both a
functional form and the ability to instantiate itself as a matrix of arbitrary size in or-
der to act on discretizations. In addition to standard arithmetic operators, the object
class has methods \, eigs and expm for the solution of linear boundary-value, eigen-
value, and time evolution problems for differential, integral, and integro-differential
operators.

We have extended Chebfun to apply forward-mode AD to find Fréchet derivatives
of nonlinear operators. The AD techniques are applied only to the variables of the
original operator, not the discretized variables. The result of the differentiation is a

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:3

linear operator object, which can represent a linearized BVP in the Newton iteration.
By pairing the Fréchet differentiation with a damped Newton iteration, we have cre-
ated a new object class in Chebfun for nonlinear operators, capable of fully automatic
solution of a wide range of nonlinear BVPs of the form

φ(u) = 0,

α(u)
∣∣
x=a = 0, β(u)

∣∣
x=b = 0.

Here, φ, α, and β are (differential) operators; φ represents the differential equation,
and α and β the left and right boundary conditions, respectively. They are further dis-
cussed in Section 2. Problems possible to solve include both scalar and systems of cou-
pled equations of any order, although beyond fourth order, poor matrix conditioning be-
comes an overriding concern unless special steps are taken [Don and Solomonoff 1997].
The solutions returned are in many cases obtained at accuracies and speeds not avail-
able from well-known MATLAB methods, most notably bvp4c and bvp5c [Kierzenka
and Shampine 2007] (and the existing Chebfun overloads for them1). Furthermore,
the problem specification syntax for the new methods is simpler and more direct than
that of the bvp4c/5c family; for instance, there is no need to write a high-order problem
as a first-order system.

The linear operator class in Chebfun was originally given the name chebop. In recog-
nition of the greater generality available from the work described here, the chebop
class name applies to the new class for nonlinear operators as of Chebfun version 4.
The syntax and capabilities for linear operators from version 3 have been migrated
to work with a newly named linop class. For most users and problems, however, the
chebop syntax is now the most appropriate one.

From the given description of BVPs, a computational object such as a chebop which
may be used to solve BVPs requires the following components, here given with their
mathematical symbols and name of chebop fields used to represent them.

Component Mathematical symbol chebop field
Interval on which problem is defined [a, b] dom

Differential equation operator φ op

Boundary condition operators α and β lbc and rbc

Initial guess of the solution u0 init

The fields of a chebop can be set either in the chebop constructor when it is created,
or later by accessing them directly (e.g., with N.init = 0). The chebop class is further
discussed in Section 4.2.

As a prototype example of chebop use, solving the problem

u′′ + 2usin u = 0, 0 < x < 5, u′(0) = 0, u(5) = 1, (1)

for the function u = u(x), becomes simply

% Create an anonymous function for the differential equation

phi = @(u) diff(u,2)+2*u.*sin(u);

% Anonymous functions for left and right boundary conditions

alpha = @(u) diff(u); beta = @(u) u-1;

% Create a chebop object representing the BVP on the interval [0,5].

N = chebop(phi,[0 5],alpha,beta);

1Chebfun offers overloaded bvp4c/5c methods, which call the original methods for computing solutions.
They differ from the original methods mainly in that their outputs are chebfuns, rather than vectors.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:4 A. Birkisson and T. A. Driscoll

% Use the initial guess of the solution u0 = pi

N.init = pi;

% Obtain a solution to the problem N(u)=0 using nonlinear backslash

u = N\0;

With the default tolerance (as described in Section 4.1) of 10−10, this solution takes
about 0.62 seconds on a tri-core 2.5 GHz workstation2, delivering the converged solu-
tion u as a polynomial of degree 58 with a residual 2-norm, ‖φ(u)‖, less than 4 · 10−11.
(We acknowledge that that small residuals do not necessarily indicate that solutions
are close to the true ones; in Section 4.4 we compare the chebop solutions to the ana-
lytical ones for problems where the analytical solutions are known.)

Section 3 explains how forward-mode AD techniques are implemented to find
Fréchet derivatives automatically. Because Chebfun has many uses besides the so-
lution of nonlinear BVPs, we placed a high priority on not creating a large computa-
tional overhead for other uses. To keep with the highly interactive nature of Chebfun,
we also desired a syntax as unobtrusive and automatic as possible. These goals led
us to make what we believe to be two new contributions to AD software techniques.
First, we exploit delayed evaluation, implemented using recursion and the assignment
of identification tags to Chebfun objects. Thus, for example, if f is a chebfun created
though expressions with chebfuns u and v, then calls of diff(f,u) and diff(f,v) ini-
tiate AD computations using information cached and encapsulated in f. Second, the
independent and dependent variables are specified simultaneously; in the previous ex-
ample, there is no need to designate u or v specially before the construction of f or calls
to diff.

Section 4 describes the damped Newton iteration and other details behind the new
chebop class and the “nonlinear backslash” capability, and provides numerous exam-
ples illustrating various aspects of flexibility in the system. It includes experimental
comparison of this new solver with other BVP solvers in MATLAB. We find that if only
low accuracy is requested, our solver is slower, but at higher requested accuracy, our
solver is comparable to or faster then the others in execution time. Since the human
time used for setting up many problems is in fact much longer than the actual run-
ning time for the computations, and the chebop syntax can be considered to be more
convenient for the user than the one used for the other solvers, we believe this new
method has significant benefits to offer. The section also includes a short introduction
to chebgui, a graphical user interface to Chebfun. Finally, Section 5 mentions some of
the limitations still imposed by the system and suggests avenues of future investiga-
tion and application.

2. NEWTON ITERATIONS IN CHEBFUN

The Newton iteration for a multivariate function f : Rn �→ Rn generates a sequence
of iterates x(1), x(2), . . . , starting from an initial guess x(0), such that if x(k) → x∗ as
k → ∞, then f (x∗) = 0 [Ascher et al. 1995]. Members of the sequence are defined
successively via

x(k+1) − x(k) = −
[

f ′(x(k))]−1
f
(
x(k)), (2)

where f ′(x) is the Jacobian matrix of partial derivatives ∂ fi/∂x j. We shall refer to the
quantity on the right-hand side of (2) as y(k), the Newton update. The motivation for
the update formula is the linearization

f (x) ≈ f
(
x(k)) + f ′(x(k))(x − x(k)),

2All running times cited in this article are based on the same machine.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:5

which is rigorously justifiable using Taylor series. The update is chosen so that x(k)+y(k)

is a root of the linearization rather than of f itself. Recall that the use of the inverse
matrix in (2) is a mathematical formality standing for the solution of a square linear
system of algebraic equations using standard efficient algorithms. In practice, one can
approximate the Jacobian or its inverse and obtain an approximate solution using a
quasi-Newton method.

Now suppose we have a boundary-value problem of the form described in the
introduction,

φ(u) = 0,

α(u)
∣∣
x=a = 0, β(u)

∣∣
x=b = 0,

(3)

where u is a function (i.e., u = u(x)) and φ, α, and β are operators between suitable
normed function spaces; typically, φ is a differential operator, and α and β may also
be differential operators of lower order. When convenient, we shall refer to (3) simply
as N (u) = 0, that is, we let N denote a BVP operator. The Newton iteration can
be generalized for operator equations to produce a sequence of functions u1, u2, . . .
such that if uk → u∗ as k → ∞, then N (u∗) = 0. Such infinite-dimensional Newton
methods are often known as Newton methods in function space or quasilinearization
[Ascher et al. 1995; Deuflhard 2006], but we will not distinguish between the finite-
and infinite-dimensional versions in our terminology.

The crucial component of the Newton iteration is the linearization of N about each
uk. This process requires the Fréchet derivatives of φ, α, and β, which are defined as
follows [Hutson et al. 2005]: Let V and W be Banach spaces and let U be an open
subset of V. Then for φ : U → W, the Fréchet derivative of φ at u ∈ U is defined (when
possible) as the unique linear operator A = φ′(u), A : V → W, such that

lim
v→0

‖φ(u + v) − φ(u) − Av‖W

‖v‖V
= 0.

Note in this definition that v is a function, and we require that the limit exists as v → 0
in any manner.3

Conceptually, given the current iterate uk, we replace the operator N (uk+v) for a per-
turbation v by the linearization N (uk)+N ′(uk)v, and find a root of this approximation to
determine the continuous Newton update. Hence we obtain the linear boundary-value
problem

φ′(uk)v = −φ(uk), (4)[
α′(uk)v

]
x=a = −α(uk)

∣∣
x=a,

[
β ′(uk)v

]
x=b = −β(uk)

∣∣
x=b , (5)

or using the notation introduced previously,

N ′(uk)v = −N (uk).

Solving this problem for the function v to obtain the update vk, we define uk+1 = uk + vk
and iterate. Under suitable conditions (essentially, the invertibility of the linearization
at a solution of N (u) = 0), the theorem of Kantorovich guarantees quadratic conver-
gence for suitably close initial guesses [Deuflhard 2006].

3That is, given ε > 0, there exists δ > 0 such that for ‖v‖V < δ

‖φ(u + v) − φ(u) − Av‖W ≤ ε‖v‖V .

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:6 A. Birkisson and T. A. Driscoll

In order to help us set ideas and also introduce details regarding the Chebfun soft-
ware, let us be explicit about the process for the nonlinear boundary-value problem

u′′ + 2usin u = 0, (6)
u′(0) = 0, (7)

u(5)u′(5) = 2, (8)

which is identical to (1) except with a nonlinear condition at the right boundary. Thus
φ(u) = u′′ + 2usin u, α(u) = u′, and β(u) = uu′ −2. We can find the relevant linearizations
in standard perturbation fashion:

φ(u + v) − φ(u) = v′′ + 2v sin(u + v) + 2u(sin(u + v) − sin(u))

= v′′ + 2v sin(u) + 2uv cos(u) + O
(‖v‖2).

Upon dropping high-order terms, this leads to the Fréchet derivative

φ′(u) =
d2

dx2 + ξ (u),

where ξ (u) = 2 sin(u) + 2ucos(u). This linear operator has one part that performs dif-
ferentiation and another that performs pointwise multiplication by ξ (u), such that

φ′(u) : f (x) �→ f ′′(x) + ξ (u(x)) f (x).

Proceeding similarly for the boundary conditions, we find

0 = u′(0) + v′(0),

2 = u(5)u′(5) + u(5)v′(5) + u′(5)v(5) + O
(‖v‖2).

By comparison with (5), we identify

α′(u) =
d
dx

, β ′(u) = u
d
dx

+ u′.

Note that since α is itself linear, α′(u) is independent of u, and that β ′(u), like φ′(u),
consists of a differentiation term and a multiplication term. Altogether, the Newton
update vk is defined as the solution of

v′′(x) +
[
2 sin(uk(x)) + 2uk(x) cos(uk(x))

]
v(x) = −φ(uk), (9)

v′(0) = −u′
k(0), (10)

uk(5)v′(5) + u′
k(5)v(5) = −(

uk(5)u′
k(5) − 2

)
. (11)

The linearity of α implies that the iterates uk will all satisfy the left boundary con-
dition after the first Newton update, and (10) becomes a homogeneous condition. In
practice this means that in the common case in which the boundary conditions are
linear but nonhomogeneous, we can choose an initial guess for the Newton iteration
without regard to these conditions and correct them after just one Newton step.

A Chebfun implementation of the Newton iteration for the BVP (6)–(8) is shown
in the following code. We use the general chebop class to represent the linear opera-
tors involved, the system internals will take care of automatically converting them to
linops which were discussed in the introduction. The iteration stops when the norm of
the Newton update falls below 10−11, which takes 11 iterations with the initial guess
u0(x) = x. In Figure 1 we plot the sequence of solution estimates, with an additional
axis showing the cumulative 2-norms of the update functions. After the first six or
so iterations, the quadratic convergence of the iteration can be readily confirmed from
the numerical values of the residuals.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:7

Fig. 1. The solution of the BVP (6)–(8) by the Newton iteration using Fréchet derivatives in Chebfun. The y
axis shows the cumulative sum of ‖vk‖2 for the Newton update functions vk. Note that each dash-dotted line
corresponds to one iteration, and as we get closer to a solution, the lines cluster (indicating that the updates
are getting smaller). After some initial large updates, the iteration eventually converges quadratically to
the solution.

A = chebop(0,5); % Operator on the interval [0,5]

x = chebfun(’x’,[0 5]); % The chebfun "x" on the problem interval

phi = @(u) diff(u,2)+2*u.*sin(u); % ODE part of the nonlinear BVP

u = x; % Initial guess

nrmv = 1; y = 0; % Initialize variables

plot3(x,chebfun(y,[0 5]),u), hold on

while nrmv > 1e-11 % Newton iterations

A.op = @(v) diff(v,2)+(2*sin(u)+2*u.*cos(u)).*v; % Frechet derivative at u

Du = diff(u); % Needed to compute the BCs

A.lbc = @(v) diff(v)+Du(0); % Neumann condition at x=0

A.rbc = @(v) u(5).*diff(v)+Du(5)*v+u(5)*Du(5)-2; % Robin condition at x=5

v = A\(-phi(u)); % Solve the linearized BVP

nrmv = norm(v); y = y+norm(v); % 2-norm of Newton update

u = u+v;

plot3(x,chebfun(y,[0 5]),u)

end

A closer inspection of the results of running this program reveals a subtle anomaly.
If we add the statement length(u) to the end of the Newton loop, we discover that
the length of the vector of collocated function values (i.e., the value of the solution
at Chebyshev points) used to represent the solution jumps from 2 (the linear initial
guess) to 54, grows quickly to 150, stagnates, then jumps to 232 at the last iteration.
This last iteration is particularly suspect: an update of size less than 10−11 is added to
a function that is O(1), yet the length of the numerical representation grows by more
than 50%. The explanation boils down to the difference between absolute and relative
accuracy. Each chebfun object is nominally resolved to high accuracy relative to its
own scale. When that object is actually a Newton update vk, however, it is clearly more
appropriate to resolve it to the scale of the solution estimate uk. To do this, we can add
the line

A.scale = norm(u);

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:8 A. Birkisson and T. A. Driscoll

just before the update BVP is solved via \. Making this change may have an impact on
execution time, because many fewer Chebyshev series coefficients may then be needed
to resolve vk when its scale is much smaller than that of uk. For this particular exam-
ple, this change speeds up the solution of the linear problem in the last iteration by
almost 20%, and the solution returned will be of length 150 rather than 232.

3. FRÉCHET DERIVATIVES BY AUTOMATIC DIFFERENTIATION

Automatic, or algorithmic, differentiation (AD) introduces techniques that allow a re-
liable and accurate way to obtain derivatives in scientific computing. For the standard
reference on the subject, see [Griewank and Walther 2008]. Many ideas of how to
accumulate derivatives have been described in the literature, of which the two best
known strategies are forward and reverse mode. The two approaches differ in the way
the derivatives are accumulated, that is, in how the chain rule is treated [Bischof and
Bücker 2000]. In forward mode, the derivatives are computed at the same time as
the function is evaluated, but in reverse mode, the function is first evaluated while
information is stored that enables the computation of the derivative afterwards. As
argued in Griewank and Walther [2008], forward mode should generally be used when
the number of output variables is much greater than the number of input variables,
whereas reverse mode should be used when the number of output variables is much
less than the number of input variables.

An important concept in AD is that of the evaluation trace, defined as follows.

An evaluation trace is basically a record of a particular run of a particular
program, with particular specified values for the input variables, showing
the sequence of floating point values calculated by a (slightly idealized) pro-
cessor and the operators that computed them. [Griewank and Walther 2008,
Page 4]

Each member of the sequence of operations is associated with an intermediate vari-
ables, and it is by storing information about and working with these intermediate
variables that AD is able to compute derivatives.

Generally there are two methods used to implement AD: source transformation and
operator overloading. Both methods have their advantages and disadvantages as de-
scribed thoroughly in [Bischof and Bücker 2000]. We note that both methods have
previously been implemented for MATLAB. A well known AD package for MATLAB is
MAD—MATLAB Automatic Differentiation, on which bvp4cAD is based on; see Forth
[2006] and Shampine et al. [2006]. MAD implements the operator overloaded forward
mode of AD. Kharche and Forth [2006] present the MSAD package, a source transfor-
mation implementation of forward mode automatic differentiation for MATLAB based
on MAD. Another established AD software tool for MATLAB is ADIMAT [Bischof et al.
2002]. Finally, we mention that the INTLAB (INTerval LABoratory) package also of-
fers an operator overloaded forward mode of AD. For details of INTLAB, see Rump
[1999].

Since the Chebfun project involves overloading MATLAB functions, it was logical to
use overloading for our implementation of AD. Furthermore, since we can expect the
number of variables involved in solving practical BVPs to be small, we chose to imple-
ment the more straightforward forward mode. Griewank and Walther [2008] suggest
defining a new data structure (named adouble) for implementing this approach to AD.
An adouble contains two floating point values, corresponding to the calculated values
of the function and the derivative of that function. One can think of this as an act of
associating a new field to the usual double precision numbers to enable calculations
of derivatives. Similarly, to enable AD for chebfuns, we now introduce a new field in

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:9

the chebfun object named jac, as an abbreviation for Jacobian.4 When chebfuns are
created using the constructor, we initialize the jac field to be empty, which will allow
the recursive evaluation of derivatives later on.

Our implementation of forward-mode operator overloaded AD has several features
which we believe to be novel and unique.

— The derivatives are linear operators, not matrices or vectors. The resolutions needed
for the derivatives will be determined automatically by the Chebfun system.

— We use anonymous functions and number each chebfun to enable a recursive, de-
layed evaluation of derivatives with forward mode AD. In standard forward mode
AD, on the other hand, the derivatives are computed at the same time as the func-
tions themselves are evaluated.

— There is no need to declare variables to be “AD variables” (known as active variables
in the AD literature), or to initialize derivative fields explicitly before calculations
are performed. This is in contrast to standard AD implementations, where the user
has to decide at the start of calculations what variables he or she wants to find
derivatives with respect to (the “base variables”), and initialize derivative values
accordingly.

— We can obtain derivatives of any chebfun with respect to any other chebfun.

Delayed evaluation is particularly helpful to avoiding computational overhead for
Chebfun tasks that do not require AD. This idea is similar to the one used in the
implementation of linops for linear Chebfun operators. As is described in Driscoll et al.
[2008], one way to achieve this delayed evaluation in MATLAB is to use anonymous
functions.

As an example, take the overloaded sin method. The essential lines are the
following.

function fout = sin(fin)

% Compose the input chebfun with the sin function

fout = comp(fin, @(x) sin(x));

% Assign a Jacobian (anon. func.) and ID (integers) to the chebfun returned

fout.jac = @(u) diag(cos(fin))*diff(fin,u);

fout.ID = newIDnum;

The call to the comp method in the second line is Chebfun’s facility to compose the input
chebfun with the sin function. In line three, we assign to the jac field of the chebfun
returned (fout) a MATLAB anonymous function handle via

fout.jac = @(u) diag(cos(fin))*diff(fin,u);

Here, the argument u has the meaning of the independent variable we will be differen-
tiating with respect to. The use of an anonymous function allows delayed evaluation;
the value of fin.jac does not need to be known at construction time (in the sense
that we only need to know the anonymous function in the jac field of fin, not the ac-
tual derivative). Without the anonymous function wrapper, we would have a typical
forward-mode implementation in which the jac field of some chebfun would need to be
initialized as the identity operator to signal it as a basis variable, before other cheb-
funs could be derived from it. All subsequent chebfun constructions would then use
computational time to keep Jacobians up to date. The diag method here, which corre-
sponds to creating a multiplication operator, will be further explained in Section 3.1.

4The term Jacobian technically only describes finite-dimensional operators, not our continuous setting, but
we prefer its familiarity and the close connection with discretization that it suggests.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:10 A. Birkisson and T. A. Driscoll

The process of evaluating the Jacobian field to obtain a linop is also described in that
same section.

In the fourth line of the code given previously, we assign to the private field ID the
output from the private method newIDnum. The function newIDnum returns to every
chebfun created a unique ID which consists of two integers. One of the integers is
a timestamp initialized the first time the newIDnum method is called in a MATLAB
session, and the other is a counter which starts at 1 in each session and is incremented
each time newIDnum is called.5 We emphasize that each intermediate chebfun created
when a function evaluation takes place gets a unique ID. This will be important when
we eventually evaluate derivatives.

While the straightforward use of anonymous functions here is effective, it leads to
a serious inefficiency for certain client codes. When operations are applied to a cheb-
fun repeatedly, the anonymous functions effectively create a stack of those operations,
in particular the variable workspaces in context at the creation of the jac fields. Un-
fortunately, MATLAB internally creates new copies of the entire stack of workspaces
upon each anonymous function creation, leading to exponential growth in memory
use. Thus, we found it necessary to create a new service class named anon to store
these workspaces more efficiently while offering similar functionality to anonymous
functions.

An anon object has the following four fields.

— function. A string that defines the function the anon represents.
— variablesName. A cell array of strings with the names of the variables in the

function string.
— workspace. A cell array of variables (doubles and chebfuns) with the values of these

variables.
— depth. A double used for memory control, further discussed in Section 3.3.

(The reader who has studied the functions method of normal anonymous functions in
MATLAB will spot the similarity.)

By overloading the feval and subsref methods for the anon class, one can work
with anons in a similar way as one would with anonymous functions. Using the new
anon class, the method sin.m now appears as shown here.

function fout = sin(fin)

% Compose the input chebfun with the sin function

fout = comp(fin, @(x) sin(x));

% Assign a Jacobian (anon) and ID (integers) to the chebfun returned

fout.jac = anon(’@(u) diag(cos(fin))*diff(fin,u)’,{’fin’},{fin});

fout.ID = newIDnum;

3.1. Evaluation of Derivatives

We now describe how recursion and ID fields are used to evaluate Jacobians. The
main result is that the evaluation is performed in a recursive way, which is made
possible by giving each chebfun a unique ID. To the reader already familiar with AD,
our implementation might seem like “forward-mode AD with a bit of reverse feel to it”.

5It is necessary to make the ID consist of two integers to avoid problems with saving and reloading MATLAB
workspaces.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:11

To explain the evaluation process, assume we have two functions f and g, repre-
sented by the chebfuns f and g. Furthermore, assume that g depends on f (and possi-
bly other functions), that is, there exists an operator G,

G : f �→ G(f, ·),
such that g = G(f, ·). Then, when we speak of the “derivative of g with respect to f ”
or the “the Jacobian of g with respect to f ”, mathematically, we mean the Fréchet
derivative of the operator G at the point (in function space) f .

To obtain g, we need to start with f and perform a sequence of calculations. In that
series of calculations, we will be creating temporary variables known as intermediate
variables in the AD literature. Each intermediate variable is obtained by performing
elementary operations, such as +, *, sin and exp on variables which already exist.
Every intermediate variable has a jac field similar to the one shown for the sin.m
method, which contains an anon that depends on variables that have been previously
created.

To obtain the derivative of g with respect to f , we call diff(g,f). The diff method
starts by using ID fields to see whether f and g are the same chebfun. If so, the
Jacobian is an identity linop. Otherwise, the anon object in the jac field of g is evalu-
ated with f as its argument. This will continue recursively through all intermediate
variables in the evaluation trace between f and g, until f is reached and the identity
operator forms the bottom of the recursion.

To put this information into context with the example shown previously of the over-
loaded sin method, the third line of the method read

fout.jac = anon(’@(u) diag(cos(fin))*diff(fin,u)’,{’fin’},{fin});

As described in Driscoll et al. [2008], if h is a chebfun, diag(cos(h)) is a linop that
corresponds to the multiplication operator

Mcos(h(x)) : k(x) �→ cos(h(x))k(x).

Such multiplication operators are the continuous analogues of diagonal matrices. The
second part of the anon is diff(fin,u). As explained previously, this corresponds to
the linop which is the Jacobian of fin with respect to u. However, since diff(fin,u) is a
part of the anon, no actual function call is made at the time the jac field gets assigned
a value. If we make the assignment

g = sin(f);

g corresponds to fout and f corresponds to fin. Then, when we call

dgdf = diff(g,f); % Differentiate g with respect to f

u gets assigned the value f, and the result will be the linear operator

Mcos(f (x)) I,

where I is the identity operator on the interval f is defined on.
Comparing this anon with the standard rules of calculus, we see that it represents

the chain rule. The evaluation process is further explained in the listing of Algorithm 1
and Figure 2 where we show an example of the evaluation of a Fréchet derivative.

Note that the syntax described here is an extension to the diff method already in
the Chebfun system. If diff is called with one chebfun argument, the result is another
chebfun which corresponds to the derivative of the polynomial representation of the
input chebfun. Thus, when diff is called with one argument, the derivative returned
is calculated with traditional numerical differentiation, and no information from the
evaluation trace is used.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:12 A. Birkisson and T. A. Driscoll

Fig. 2. Recursive evaluation of the function g with respect to the function f , where f = sin(x), g1 =
cos(f), g2 = xf 2 and g = g1 + g2. In the figure, I stands for the identity operator, M for a multiplication
operator (such that Mh(x) : k(x) �→ h(x)k(x)) and O for the zero operator on the domain of the functions. Note
that I, M and O are all linear operators.

Algorithm 1 Recursive evaluation of Fréchet derivatives.

Input: Chebfuns f and g.

Output: The derivative of g with respect to f .

Extract IDs of g and f.
if jac field of g is empty then

return O, the zero operator on the domain of f and g.
else if IDs match then

return I, the identity operator on the domain of f and g.
else

Evaluate the derivatives of the intermediate variables g is composed of
with respect to f (recursively), and combine the resulting derivatives
according to the chain rule.

end if

3.2. Examples of Fréchet Derivatives in the Chebfun System

We begin some examples of automatic Fréchet differentiation by defining the linear
function x on the interval of interest. Other functions on the same interval can then
be defined as follows.

>> % Create a linear chebfun on [-1,1]

>> x = chebfun(’x’,[-1,1]);

>> % Create further chebfuns by composing chebfuns already created

>> f = x.^2;

>> g = x+f.^2;

>> h = sin(f) + diff(g);

This corresponds to defining the functions f, g and h on the interval [−1, 1] by

f = x2

g = x + f 2 = x + x4

h = sin(f) + g′ = sin(x2) + 1 + 4x3,

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:13

where ′ denotes the derivative of a function with respect to the independent function
x. Throughout the rest of this section, we use total derivatives to denote Jacobian
operators.

Suppose for example that we perturb the function f by an infinitesimal function δ f .
What effect will this have on g? The answer is that the first order variation will take
the form

dg
d f

=
∂g
∂ f

+
∂g
∂x �

�
��
0

dx
d f

=
∂

∂ f

(
x + f 2) = 0 + 2 f = 2x2.

In other words, dg
d f is the linear operator that multiplies a function on [−1, 1] by 2x2,

that is,
dg
d f

: k(x) �→ 2x2k(x).

With chebfuns, we obtain this operator by calling diff with two arguments —
diff(g,f). In order to see the same representations that are used internally, here
we request the output in the form of a linop.

>> % Differentiate the chebfun g with respect to the chebfun f

>> dgdf = diff(g,f,’linop’)

dgdf = linop

operating on chebfuns defined on:

interval [-1,1]

with n=6 realization:

2.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 1.3090 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.1910 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.1910 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 1.3090 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 2.0000

with functional representation:

@(u) innersum(u,i,j)

In the case where Jacobian operators are diagonal, a function is defined by the
information on the diagonal. We can extract this function from the diagonal by letting
it operate on the function 1 on the interval. This is done in the overloaded function
diag.

>> diag_dgdf = diag(dgdf); % Extract the diagonal of the linear operator

We verify that the AD derivative matches the analytical exactly.

>> % Measure the difference between the two functions in the 2-norm

>> norm(diag_dgdf - 2*x.^2)

ans =

0

However, not all Jacobian operators are diagonal. For example, suppose we want to
obtain dh

dg , the derivative of h with respect to g. Since

h = sin(f) + g′,

we have
h + δh = sin(f) + (g + δg)′,

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:14 A. Birkisson and T. A. Driscoll

so dh
dg must be the differentiation operator on the interval with respect to the

variable x:

>> dhdg = diff(h,g,’linop’) % Differentiate h w.r.t. g

dhdg = linop

operating on chebfuns defined on:

interval [-1,1]

with n=6 realization:

-8.5000 10.4721 -2.8944 1.5279 -1.1056 0.5000

-2.6180 1.1708 2.0000 -0.8944 0.6180 -0.2764

0.7236 -2.0000 0.1708 1.6180 -0.8944 0.3820

-0.3820 0.8944 -1.6180 -0.1708 2.0000 -0.7236

0.2764 -0.6180 0.8944 -2.0000 -1.1708 2.6180

-0.5000 1.1056 -1.5279 2.8944 -10.4721 8.5000

with functional representation:

@(u) innersum(u,i,j)

and differential order 1

We confirm that the AD result is the correct operator by letting dh
dg operate on the

function x on the interval and measure the norm between the resulting chebfun and
the analytical derivative.

>> % Measure the difference between the computed and analytical answer

>> norm(dhdg*x-1) % Default call to norm uses the 2-norm

ans =

0

We can also obtain the derivative of h with respect to f . We now have that

dh
d f

=
∂h
∂ f

+
∂h
∂g

dg
d f

+
∂h
∂x �

�
��

0

dx
d f

= cos(f) + D · 2 f = cos(f) + D · 2x2,

where D is the differentiation operator on the interval [−1, 1]. If we now let dh
d f operate

on the function x, the result will be cos(f)x + (2x2x)′ = cos(f)x + 6x2:

>> dhdf = diff(h,f);

>> norm(dhdf*x - (cos(f).*x+6*x.^2))

ans =

0

Again, the answer obtained using AD is exact.

3.3. Controlling Memory Usage

Whereas the anon class described here removes certain inefficiencies of implementing
AD for Chebfun, another issue arises for certain client codes, especially ones based
on iterative processes (such as GMRES [Saad and Schultz 1986]). As the number of
iterations grows, the calculation tree (whose root in this notation is the chebfun x)
becomes huge, and the risk of running out of memory becomes high. In fact, memory
control is a very important issue for AD in general [Griewank and Walther 2008].

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:15

In order to manage the use of memory, we monitor the depth property of the anon
object. The depth of an anon indicates how far from the initial chebfun variable an-
other chebfun is (i.e., how high in the calculation tree it is). By definition, the depth of
the linear chebfun variable x is 0, and the depth of other variables is given by the max-
imum of the depth of the variables it is created from plus 1. Once the depth exceeds a
maximum value (the default value is 25), a dummy anon with an empty workspace is
returned and future AD calculations with the resulting variables are disabled.6

4. AUTOMATIC ITERATIONS FOR BOUNDARY-VALUE PROBLEMS

4.1. Damped Newton Iteration

As described in Section 2, we wish to solve a nonlinear boundary-value problem (BVP)

φ(u) = 0,

α(u)
∣∣
x=a = 0, β(u)

∣∣
x=b = 0,

(12)

which we sometimes write as

N (u) = 0,

where N is a nonlinear BVP operator. If we have a guess of the solution, uk, we can use
a Newton iteration to solve the problem by calculating the update vk, where vk satisfies
the linearized boundary value problem

N ′(uk)vk = −N (uk).

We use automatic differentiation to obtain N ′, the derivative of the operator N , which
incorporates linearized forms of the boundary conditions as well as the differential
equation. Formally, we solve for the update:

vk = −(N ′(uk))−1N (uk).

In the software, this equation implies the automatic solution of a linear BVP using the
backslash operator of the linop class.

Once the update vk has been calculated, we update our current guess of the solution
to obtain the next guess of the solution, uk+1, via

uk+1 = uk + vk. (13)

However, this update formula is only guaranteed to converge to a solution for a suf-
ficiently close initial guess, and in practice, the solution process could take too many
iterations, stagnate, diverge or even fail if N ′ is singular. In order to increase the
chance of an initial guess converging to a solution, Equation (13) is often modified to
include a damping parameter λk, so that the solution is updated via

uk+1 = uk + λkvk. (14)

6The maximum AD depth can be set using cheboppref(’adddepth’,newvalue). This allows users to switch
AD off completely by setting the new value to be 0.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:16 A. Birkisson and T. A. Driscoll

An obvious question now is how to choose the damping parameter (also known as
the step size). Ideally, we would want to find a λk that minimizes ‖N (uk+1)‖, that is,
for a given guess uk and an update vk, we want to minimize the residual of our next
guess in some norm ‖·‖. The problem of finding the value for λk thus becomes an
optimization problem, which in turn depends on the choice of an objective related to
the residual N (u). Similarly to the natural criterion function described in Ascher et al.
[1995], we define our natural criterion function as

γ (wλ
k) =

1
2

‖wλ
k‖F, (15)

where wλ
k is a solution to the linear BVP

N ′(uk)w = −N (uk + λvk),

and ‖·‖F is the Frobenius norm (or since we are working in the continuous context,
the Hilbert-Schmidt norm). For the rest of this article, we let ‖·‖ denote the Frobenius
norm. Using an algorithm whose details we give in the following, we find the optimal
value for λ in each iteration.

The reason why we use (15) as our objective function rather than simply

‖N (uk + λvk)‖ (16)

is summarized in Ascher et al. [1995, p. 333]. The simple objective function given
by (16) is sensitive to scaling of the variables as well as rescaling of the equations in
BVPs. Furthermore, it runs into trouble when the Jacobians are ill-conditioned, as
it loses sensitivity to improvements with respect to the BVPs. The objective function
(15) is known as an affine invariant objective function. The importance of working in
an affine invariant framework is further described in [Deuflhard 2006].

In practice, we have found that even though the value we find for λ is the optimal
one in a given iteration, sometimes we benefit more in the long run by giving the
solution process a “kick”, by which we mean that if our linesearch algorithm suggests
taking the smallest allowed step size, we try instead to take the full Newton step. In
our code, we take the full Newton step if the line search has predicted the minimum
allowed value of λ for three iterations in a row. This approach is generally not taken
in the literature, where all algorithms we have found return a “no convergence flag” if
the recommended step size is smaller than the minimum allowed step size. However,
our experience suggests that reverting to the Newton step as a last resort rather than
abandoning the iteration can lead to successful convergence in some difficult problems.

We use three criteria to check whether the solution process has converged, and if
any criterion is satisfied, we stop the Newton iteration. These criteria are as follows.

— The norm of the latest update is less than a specified tolerance ρv (default value
10−10).

— The norm of the residual is less than a specified tolerance ρRes (default value 10−10).
We define the norm of the residual at the k-th iteration as

Rk =
√

‖φ(uk)‖2 + ‖α(u)
∣∣
x=a‖2 + ‖β(u)

∣∣
x=b‖2.

— The number of iterations is greater than a specified maximum.

Note that since one of the design aims of Chebfun is to be scale-invariant, all tolerances
involved are relative tolerances with respect to the norm of the current guess of the
solution.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:17

Algorithm 2 Newton iteration for solving boundary value problems.

Input: A boundary value problem of the form N (u) = 0, equivalent to φ(u) =
0, α(u)

∣∣
x=a = 0, β(u)

∣∣
x=b = 0. An initial guess of the solution, u0, convergence

tolerances ρv and ρRes and an iteration limit maxiter.

Output: A solution u of the boundary value problem or a flag stating no convergence.

Initialize: Set ηv ← ∞, ηRes ← ∞.

while ηv > ρv, ηRes > ρRes and k < maxiter do
Linearize the operator N around the latest guess of the solution uk to
obtain N ′(uk).

Find a solution vk to the linear BVP

N ′(uk)v = −N (uk).

if k ≥ 1 then
Calculate the contraction factor

�k−1 ← ‖vk‖
‖vk−1‖ .

end if
if k = 0 or (k ≥ 1 and �k−1 ≤ 1) then

Set λk ← 1 to take the full Newton step.
else

Calculate the Newton step size λk (as described in Appendix A).
end if
Update the solution:

uk+1 ← uk + λkvk.

Evaluate quantities used for convergence checks:

ηv ← ‖vk‖2

‖uk+1‖2
,

ηRes ← ‖φ(uk+1)‖2 + ‖α(u)
∣∣
x=a‖2 + ‖β(u)

∣∣
x=b‖2

‖uk+1‖2
.

end while
if k = maxiter then

return a flag stating no convergence.
else

return the solution uk+1.
end if

The details of the damped Newton iteration are summarized in the listing of
Algorithm 2. The Newton algorithm we implemented is inspired by the “Error match-
ing algorithm” found in Deuflhard [2006, p. 365] and the “Damped Newton method”
algorithm described in Ascher et al. [1995, p. 335]. Unlike the former algorithm, the
mesh is chosen globally and automatically by the Chebfun internals, so we do not have
to refine the mesh explicitly when we solve BVPs. The step size search we implemented
is taken from the latter algorithm, and is the same as the one used in MATLAB’s BVP
routine bvp4c. The step size search is performed using weak line search; we give the
algorithm in Appendix A.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:18 A. Birkisson and T. A. Driscoll

4.2. The Chebop Class

As stated in the introduction, the computational specification of the BVP (12) requires
the following components.

Component Mathematical symbol chebop field
Interval on which problem is defined [a, b] dom

Differential equation operator φ op

Boundary condition operators α and β lbc and rbc

Initial guess of the solution u0 init

We have created a new class called chebop in order to store and work with all this
information. Note that when solving BVPs, the user will pass information about the
right-hand side of the differential equation to the solver directly (i.e., not using the
chebop class), while the right-hand sides of the boundary conditions are always as-
sumed to be 0 (so α and β must be on the form such that α(u)

∣∣
x=a = 0 and β(u)

∣∣
x=b = 0

where u is a solution of the BVP). The fields of a chebop can be set either in the chebop
constructor when it is created, or later by accessing them directly.

The user may supply the initial solution guess u0, but if none is given, the chebop
constructor will start with the lowest-degree polynomial for each solution variable that
interpolates all numerical boundary values given. When the boundary operators are
not of Dirichlet type, that is, u(a) = A , u(b) = B, where A and B are constants, the
initial guess will usually not satisfy the boundary conditions. If the boundary con-
ditions are linear, then one damped Newton iteration will correct them; otherwise,
convergence to satisfaction of the conditions is not assured.

4.3. Examples

To illustrate how we work with chebops, assume that we want to find a solution to this
nonlinear boundary value problem due to Carrier [Bender and Orszag 1978]:

εu′′ + 2(1 − x2)u + u2 = 1, u(−1) = 0, u(1) = 0, (17)

with ε = 0.01. We can create a chebop by calling the chebop constructor with argu-
ments corresponding to the endpoints of the interval of interest as follows.

>> N = chebop(-1,1); % Create a chebop on [-1,1]

We use anonymous functions to define the differential equation of the operator.

>> % Assign the DE of the chebop

>> N.op = @(x,u) 0.01*diff(u,2) + 2*(1-x.^2).*u + u.^2;

Boundary conditions can be set up in a number of ways, as explained in the online
guide [Trefethen et al. 2011]. In the case of homogeneous Dirichlet or Neumann bound-
ary conditions, one can simply use a string as follows.

>> % Assign both LBC and RBC using the keyword ’dirichlet’

>> N.lbc = ’dirichlet’; N.rbc = ’dirichlet’;

If we want to use the initial guess

u0 = 2(x2 − 1)
(

1 − 2
1 + 20x2

)
, (18)

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:19

Fig. 3. A solution of the Carrier BVP (17) and the norm of the updates.

we can assign it to the init field of the chebfun object.

>> x = chebfun(’x’) % Create the function "x" on [-1,1]

>> % Assign initial guess of the solution to the chebop

>> N.init = 2*(x.^2-1).*(1-2./(1+20*x.^2));

To solve the BVP (17) using a damped Newton iteration, we now only need to exe-
cute the overloaded backslash (\) operator on the chebop N. The right-hand side of the
backslash will be the right-hand side of the differential equation of the problem, in this
case, 1. If we call the backslash with two output arguments, we also get a vector with
the norms of the corrections at each iteration.

>> [u, delta_norms] = N\1; % Solve the nonlinear BVP

In Figure 3, we plot the solution obtained as well as the norms of the updates. In the
right part of the figure, we see that the convergence starts off slowly, but achieves its
quadratic behaviour once we get nearer to the solution. Note that if we had started
with a different initial guess, we could have converged to another solution. The follow-
ing computation shows that the solution is obtained to a high accuracy.

>> norm(N(u)-1) % The 2-norm of the residual of the BVP

ans =

1.042484141631300e-011

This code runs in 1.9 seconds. While there certainly exists software that is able to solve
this problem faster (for example MATLAB’s bvp4c and bvp5c), our approach offers two
important benefits compared to other software.

— A very accurate solution can be produced.
— An extremely simple problem setup, requiring none of the usual problem manipula-

tion (such as casting as a first-order system) and separate file programming common
to other numerical software.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:20 A. Birkisson and T. A. Driscoll

Fig. 4. A plot shown after the second iteration of solving the BVP (17). The top plot shows the current
guess of the solution and the bottom plot shows the latest Newton update. The filled circles on the lines are
located at the Chebyshev interpolation points (for the respective degrees of polynomials of each function).

For research or instructional purposes, we have the option of solving the problem
using a pure Newton iteration (i.e., no damping) by executing the command

>> cheboppref(’damped’,’off’) % Turn damped Newton iteration off

before the backslash command. For this example, the solver will still converge when
using pure Newton iteration. However, we should only expect that to happen when we
have a good initial guess.

The option of the pure Newton iteration enables our system to offer the unique
possibility of visualizing it in the functional setting. By executing the command

>> cheboppref(’plotting’,’on’) % Turn plotting for each iteration on

before calling the backslash operator, our solver plots in each iteration the current
guess of the solution as well as the latest Newton update. In Figure 4 we show such a
plot, taken after the second iteration when solving the Carrier problem (using a pure
Newton iteration and starting from the initial guess (18)).

If we want to change the BVP (17) so that we impose different boundary conditions,
we can reuse the chebop created before and change only the relevant fields. If we now
want to solve

εu′′ + 2(1 − x2)u + u2 = 1, u(−1) = 1, u′(1) + u(1) = 0, (19)

with ε = 0.01 as before, we execute the following commands.

>> N.lbc = 1; % Change the LBC so that u(-1) = 1

>> N.rbc = @(u) diff(u)+u; % Change the RBC so that u’(1)+u(1) = 0

>> [u delta_norms] = N\1; % Find a solution to the BVP

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:21

(When boundary conditions are assigned in the way N.lbc is here, the system auto-
matically creates anonymous functions to represent the boundary condition operators.)
Again, we obtain the solution to a high accuracy.

>> norm(N(u)-1) % The 2-norm of the residual of the BVP

ans =

3.056740713605460e-011

We now show how to solve the BVP from Section 2, which we state again for
convenience:

u′′ + 2usin u = 0, u′(0) = 0, u(5)u′(5) = 2. (20)

As in Section 2, we use a pure Newton iteration, so we begin by executing the following
statement.

>> cheboppref(’damped’,’off’) % Turn damped Newton iteration off

The problem is then solved as follows.

>> N = chebop(0,5); % Create a chebop on [0,5]

>> N.op = @(u) diff(u,2)+2*u.*sin(u); % Assign the DE part

>> N.lbc = ’neumann’; % Homogeneous Neumann LBC

>> N.rbc = @(u) diff(u).*u-2; % Set RBC, u’(5)*u(5) = 2

>> N.init = chebfun(’x’,[0 5]); % Initial guess of the solution

>> [u normv] = N\0; % Solve using overloaded \

This code runs in 1.8 seconds, whereas if we perform the Newton iteration by using
advance knowledge of the Fréchet derivative of N to set up and solve linear boundary
value problems directly using Chebfun’s linop objects for linear operators, the problem
is solved in 1.1 seconds. The main difference originates from the fact that now we are
calculating the derivatives automatically, whereas previously the user supplied them
explicitly. Our estimate shows that for this example, around 20% of the total solution
time is spent in AD calculations. Furthermore, the code underlying the chebop solu-
tion is more general and robust than the simple Newton iteration shown in Section 2.
We believe that this moderate penalty is a reasonable price to pay for the increased
convenience in solving BVPs.

The problem discussed in the introduction section (which is identical to the BVP
(20) except for the right boundary-condition u(5) = 1) has multiple solutions. To obtain
a second solution, we can start by solving the initial-value problem

u′′ + 2usin u = 0, u(0) = 3, u′(0) = 0, (21)

and use the solution we obtain as an initial guess for the original BVP. The code for
these computations is shown in the following; in Figure 5 we plot the two solutions.
Many more examples are available online, see Trefethen et al. [2011].

>> N = chebop(0,5); % Create a chebop on [0,5]

>> N.op = @(u) diff(u,2)+2*u.*sin(u); % Assign the DE part

>> N.lbc = @(u) [u-3,diff(u)]; % Two initial conditions

>> ivpSol = N\0; % Solve the IVP using overloaded \

>> N.lbc = ’neumann’; N.rbc = 1; % Assign original BCs to N

>> N.init = ivpSol; % Assign IVP soln. as initial guess

>> bvpSol = N\0; % Solve the original BVP

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:22 A. Birkisson and T. A. Driscoll

Fig. 5. Multiple solutions of the BVP u′′ + 2usin u = 0, u′(0) = 0, u(5) = 1.

4.4. Comparison with Other BVP Software

For comparison with other BVP software in MATLAB, we consider the six following
nonlinear BVPs:

u′′ + 3.5eu = 0, u(0) = u(1) = 0

xu′′ −
√

u′

x
= u′, u(1) = 1, u(2) = 2

u′′ − cos(x)u′ + u log(u) = 0, u(0) = 1, u(1) = e

u′′ − u′ + e2xu + u2 = sin
(
ex)2

, u(0) = sin(1), u
(5

2

)
= sin

(
e

5
2

)
u′′ + 18(u − u3) = 0, − u(−1) = u(1) = tanh(3)

u′′u′ − 48xu, u(0) = 0, u(1) = 1.

They can be shown to have the exact solutions

u(x) = −2 ln

[
cosh

((
x − 1

2

)
θ
2

)
cosh

(
θ
4

)
]

, where θ is a sol. of θ =
√

7 cosh
(

θ

4

)

u(x) =
A2

8
(x2 − 1) − A

2
(x − 1) +

1
4

log(x) + 1, where A =
2

(
1 +

√
7 − 3

2 log(2)
)

3
u(x) = esin(x)

u(x) = sin(ex)
u(x) = tanh(3x)

u(x) = x4,

respectively, which allows us to compare the true error, rather than residuals. The first
problem is known as the Bratu problem [Ascher et al. 1995], and is often written on

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:23

Fig. 6. Plot of the solutions of the six nonlinear BVPs we consider for comparing solvers.

the form u′′ + λeu = 0. For our choice of λ = 3.5, it is known to have two solutions, that
is, there are two values of θ which satisfy θ =

√
7 cosh

(
θ
4

)
. We find one such value of θ

numerically using MAPLE with 25 digits of accuracy, it can then be used to construct
the exact solution. The solution corresponding to the value of θ we found turns out
to be the same one as the solution found by all the solvers tested. We constructed the
other five problems to have nonlinear problems with the exact solution known, in order
to be able to compare the true errors rather than the residuals. In Figure 6, we plot
the solutions of these six problems.

As an example of the different syntaxes required, we solve the first problem using
Chebfun with the following three lines of code.

% Create a chebop describing the problem on the interval [0,1]

N = chebop(@(u) diff(u,2)+3.5*exp(u),[0 1]);

N.lbc = ’dirichlet’; N.rbc = ’dirichlet’; % Assign homogeneous Dirichlet BCs

u = N\0; % Solve using nonlinear \

With the other solvers, we need to rewrite the problem as a first-order system. Using
bvp4c, for example, the problem can then be solved it with the following lines of code.

dydx = @(x,y) [y(2), -3.5*exp(y(1))]; % First order system

bcres = @(ya,yb) [ya(1),yb(1)]; % BCs residual

solinit = bvpinit(linspace(0,1,5)’,[0 1]); % Initial guess

sol = bvp4c(dydx,bcres,solinit); % Obtain solution

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:24 A. Birkisson and T. A. Driscoll

Fig. 7. Running time vs. accuracy obtained with different solvers for six nonlinear BVPs.

By changing the last line, it is possible to obtain solutions from different solvers, that
is, bvp5c and bvp4cAD.

By changing the tolerances of the solvers, as well as limiting the number of Newton
steps allowed, it is possible to create work-precision diagrams.7 These show how much
time it takes to get a specific accuracy, by which we mean the maximum error of the
numerical solution compared to the analytical one. Such plots are shown in Figure 7.
The running times are found by solving each problem 101 times at a given level of ac-
curacy, subtracting the first running time (to avoid distortion from time taken loading
the programs into the computer cache) and taking the average of the remaining ones.
For all the problems, we used simple initial guesses, either constants or the guesses
constructed automatically by Chebfun.

From Figure 7, it is clear that for low accuracy, Chebfun is outperformed by the
other methods. However, if we require higher accuracy, Chebfun usually has clear
benefits, taking equivalent or shorter times to return solutions closer to the exact ones
than the other solvers. Importantly, as the problems only take a couple of seconds to
solve, the human time used to set up problems, for instance, the error-prone process of
writing them as first order systems, will greatly outweigh the computer time used to

7The limiting of Newton steps forces the solvers, both the Chebfun one and the others, to return their
current guess of the solution even though the other convergence criteria of the solvers haven’t been met at
that point. This way, we can obtain solutions after various running times which we then use to compare
with the true solution. Informally, we can think of this as giving the solvers a fixed time to solve a problem,
and see how good that solution is once that time is up.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:25

solve the problems. In that aspect, chebops offer many benefits compared with existing
software.

To comment further on the results of solving the test problems, we note that gener-
ally, the regular bvp4cAD method is found to be slower than all the other methods for
intermediate and high accuracies. However, if we rewrite the problems in vectorized
form, and turn on the vectorized option for bvp4cAD, the performance is drastically im-
proved. We also found that using vectorization did not speed up the bvp4c/5c solvers.
These observations are in agreement with Forth and Shampine [2005]. As the re-
quested accuracy is increased, the number of gridpoints bvp4c/5c and bvp4cAD use
grows very quickly, in most cases up to many thousands, whereas the Chebfun solu-
tions require much more modest numbers of gridpoints. Finally, we mention that an
interesting phenomenon happens in the last problem, where bvp5c completely fails to
converge to the solution, and bvp4c and chebops struggle to obtain high accuracy.

4.5. A Graphical User Interface to Chebfun

To further add to the convenient way chebops can be used to solve nonlinear BVPs,
we have designed a graphical user interface (GUI) to the chebop solver, called chebgui.
The GUI accepts a “natural syntax” for problems, removing the need for users to define
anonymous functions and construct chebop objects, and instead it is possible to input
problems in a form such as

u′′ = − sin(u)

(which corresponds to a differential equation describing the motion of a nonlinear pen-
dulum). By setting up boundary conditions in a similarly intuitive way, the user can
press the solve button and the system takes care of all the work required to convert
the BVP to a form chebops can work with. The GUI offers many other features, in-
cluding a collection of demos. We however consider the most important feature to be
the capability of exporting problems from the GUI to a MATLAB script. This enables
users to start with a problem in the GUI, and automatically generate code for some
more serious explorations. We show a screenshot of the GUI in Figure 8.

5. LIMITATIONS AND FUTURE DIRECTIONS

The AD implementation we have chosen to use in Chebfun creates some limitations.
For example, our use of delayed evaluation to avoid AD computational overhead until
a Jacobian is demanded requires the attachment to each chebfun of a memory stack
(in the form of an anon object) for all the operations leading to the construction of
that chebfun. It is evident from Figure 2 that our AD implementation can give rise
to unnecessary calculations being performed. For example, in the overloaded sin.m
method, the jac field of the chebfun returned is given by the following.

anon(’@(u) diag(cos(fin))*diff(fin,u)’,{’fin’},{fin});

This implies that every time we differentiate the chebfun returned, we calculate the
linop corresponding to the multiplication operator

Mcos(fin(x)) : k(x) �→ cos(fin(x))k(x),

even though fin might not depend on the function we are differentiating with respect
to (in which case, diff(fin,u) will be the zero linop, and the derivative returned will
thus be the zero linop as well). We believe that it might be possible to improve the anon
class to prevent such unnecessary calculations. Given Chebfun’s symbolic feel, there
might even be valuable ideas available from work done on AD with computer algebra
systems (CAS). One such software tool is the CODEGEN package for MAPLE discussed

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:26 A. Birkisson and T. A. Driscoll

Fig. 8. A screenshot of the Chebfun GUI.

in Monagan and Monagan [1997], where the authors discuss common subexpression
optimization which is achieved by hashing of formulae. With the planned move of
Chebfun to MATLAB’s new object-oriented programming model, which introduces han-
dle classes, we might be able to make improvements to address these issues.

A number of possible improvements of the current code readily suggest themselves.
There is no reason in principle that the code cannot be extended to solve more general
boundary-value problems, such as ones with nonseparable boundary conditions or aux-
iliary parameters. For example, the nonseparated condition u(1)−u(0) = 0 is associated
with the linear functional E1 − E0, where Ex represents evaluation at the point x. This
functional is its own Fréchet derivative, and there is no difficulty with representing it
in Chebfun. However, automatic differentiation of a scalar result presents a problem
in our system, because the result of Matlab type double cannot encode the information
needed to construct the derivative. We are exploring the option of temporarily repre-
senting a scalar result as a constant chebfun in order to permit differentiation. The
ability to differentiate functionals may also lead to interesting applications in control
and optimization.

We do not regard our step size selection in the damped Newton iteration as a set-
tled matter, and plan to improve our strategy, for example using the idea of restric-

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:27

tive monotonicity test discussed in Bock et al. [2000]. The idea of giving the solution
process a kick by taking the full Newton step rather than the smallest allowed step
size if the Newton iteration appears to be failing to converge, described in Section
4.1, seems to work well in practice. It would be interesting to see whether coming
up with other heuristic might help to increase the probability of the iteration to con-
verge. Efforts are already underway to apply the nonlinear BVP code to partial differ-
ential equations. Another effort is being undertaken to apply Fréchet AD techniques
to nonlinear eigenvalue and other types of continuation problems [Allgower and Georg
2003], and to find robust ways to converge to multiple solutions without explicit initial
guesses.

APPENDIX A. WEAK LINE SEARCH ALGORITHM

The following weak line search algorithm is used for the damping parameter/step size
search in the damped Newton iteration. It is based on the algorithm shown in Ascher
et al. [1995, p. 335] to which we refer for further discussion on the control parameters
in the algorithm. ‖ · ‖ denotes the Frobenius norm.

Algorithm 3 Step size search at the kth iteration of Newton iteration.

Input: A boundary value problem of the form N (u) = 0, a current guess of the solution uk,
the latest Newton update vk, the inverse of the Fréchet derivative of N at uk.

Output: A damping parameter λk.

Define the objective function

γ (wλ
k) =

1
2

‖wλ
k‖

Set control parameters; λmin ← 0.1 (minimum allowed step size), σ ← 0.01 (ensures sufficient
decrease of γ), τ ← 0.01 (ensures quadratic model of γ is valid).

Initialize: Set λ ← 1. Store γ0 ← 1
2

‖v‖ (this holds since w0
k = vk, see definition of wλ

k as

follows).

while λ has not been accepted do
Find a solution wλ

k to the linear BVP

N ′(uk)wk = −N (uk + λvk).

Set γλ ← γ (wλ
k).

[Test acceptance of λ. If value is not accepted, search for the next value
of λ with the weak line search.]
if γλ ≤ (1 − 2λσ)γ0 then

Accept λ, set λk ← λ.
else

λ ← max
(

τλ,
λ2γ0

(2λ − 1)γ0 + γλ

)
if λ < λmin then

Accept the value λmin for λ, set λk ← λmin.
end if

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

26:28 A. Birkisson and T. A. Driscoll

if λk−3 = λk−2 = λk−1 = λk = λmin then
Set λk ← 1 (take a full Newton step and give the solution process
a kick).

end if
end if

end while
returnλk.

ACKNOWLEDGMENTS

We wish to thank Nick Trefethen for many comments, suggestions and revisions while working on this arti-
cle. We are also grateful to Shaun Forth at Cranfield University for discussions on automatic differentiation
and for giving us a working copy of MAD and bvp4cAD, as well as Peter Deuflhard and Martin Weiser at
the Zuse Institute, Berlin, for discussions on methods for boundary-value problems. We thank the referees
for their comments, which greatly improved this article. In particular, the second referee’s observation that
the BVP discussed in Section 4.3 has multiple solutions was useful for demonstrating some capabilities of
Chebfun. Finally, we would like to acknowledge Pedro Gonnet, Oxford University, for pointing out flaws
with our previous memory control approach.

REFERENCES
ALLGOWER, E. L. AND GEORG, K. 2003. Introduction to Numerical Continuation Methods. SIAM,

Philadelphia, PA.
ASCHER, U. M., MATTHEIJ, R. M. M., AND RUSSELL, R. D. 1995. Numerical Solution of Boundary Value

Problems for Ordinary Differential Equations. SIAM, Philadelphia, PA.
BENDER, C. M. AND ORSZAG, S. A. 1978. Advanced Mathematical Methods for Scientists and Engineers.

McGraw-Hill, New York.
BISCHOF, C. H. AND BÜCKER, H. M. 2000. Computing derivatives of computer programs. In Modern

Methods and Algorithms of Quantum Chemistry: Proceedings 2nd Ed. J. Grotendorst Ed., NIC Series,
vol. 3, NIC-Directors, Jülich, 315–327.

BISCHOF, C. H., BÜCKER, H. M., LANG, B., RASCH, A., AND VEHRESCHILD, A. 2002. Combining source
transformation and operator overloading techniques to compute derivatives for MATLAB programs.
In Proceedings of the 2nd IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM’02). IEEE, 65–72.

BOCK, H. G., KOSTINA, E., AND SCHLÖDER, J. P. 2000. On the role of natural level functions to achieve
global convergence for damped Newton methods. In Proceedings of the 19th IFIP TC7 Conference on
System Modeling and Optimization. M. J. Powell and S. Scholtes Eds., Kluwer, B.V., Deventer, The
Netherlands, 51–74.

DEUFLHARD, P. 2006. Newton Methods for Nonlinear Problems. Springer.
DON, W. S. AND SOLOMONOFF, A. 1997. Accuracy enhancement for higher derivatives using Chebyshev

collocation and a mapping technique. SIAM J. Sci. Comp. 18, 4, 1040–1055.
DRISCOLL, T. A., BORNEMANN, F., AND TREFETHEN, L. N. 2008. The chebop system for automatic solution

of differential equations. BIT Numer. Math. 48, 701–723.
FORTH, S. A. 2006. An efficient overloaded implementation of forward mode automatic differentiation in

MATLAB. ACM Trans. Math. Softw. 32, 195–222.
FORTH, S. A. AND SHAMPINE, L. F. 2005. bvp4cAD: An automatic differentiation enabled boundary value

solver. http://www.amorg.co.uk/AD/ADODE/bvp4cAD/index.html.
GRIEWANK, A. AND WALTHER, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic

Differentiation 2nd Ed. SIAM, Philadelphia, PA.
HUTSON, V., PYM, J. S., AND CLOUD, M. J. 2005. Applications of Functional Analysis and Operator Theory

2nd Ed. Elsevier.
KHARCHE, R. AND FORTH, S. 2006. Source transformation for MATLAB automatic differentiation. In Pro-

ceedings of the 6th International Conference on Computational Science. Part IV. V. Alexandrov, G. van
Albada, P. Sloot, and J. Dongarra Eds., Lecture Notes in Computer Science, vol. 3994, 558–565.

KIERZENKA, J. AND SHAMPINE, L. F. 2001. A BVP solver based on residual control and the MATLAB PSE.
ACM Trans. Math. Softw. 27, 299–316.

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

Automatic Fréchet Differentiation for the Numerical Solution of Boundary-Value Problems 26:29

KIERZENKA, J. AND SHAMPINE, L. F. 2007. A BVP solver that controls residual and error.
http://faculty.smu.edu/shampine/finalbvp5c.pdf.

MONAGAN, M. B. AND MONAGAN, G. 1997. A toolbox for program manipulation and efficient code genera-
tion with an application to a problem in computer vision. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation. 257–264.

RUMP, S. 1999. INTLAB – INTerval LABoratory. In Developments in Reliable Computing, T. Csendes Ed.,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 77–104.

SAAD, Y. AND SCHULTZ, M. H. 1986. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Statist. Comput. 7, 3, 856–869.

SHAMPINE, L. F., KETZSCHER, R., AND FORTH, S. A. 2006. Using AD to solve BVPs in MATLAB. ACM
Trans. Math. Softw. 31, 79–94.

TREFETHEN, L. N., ET AL. 2011. Chebfun Version 4.0. The Chebfun Development Team.
http://www.maths.ox.ac.uk/chebfun/.

Received August 2010; revised May 2011, December 2011; accepted December 2011

ACM Transactions on Mathematical Software, Vol. 38, No. 4, Article 26, Publication date: August 2012.

