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Abstract. An efficient algorithm for the accurate computation of Gauss–Legendre and Gauss–
Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding
method with initial guesses and function evaluations computed via asymptotic formulae. The n-point
quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for
any n ≥ 100.
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1. Introduction. Quadrature, or numerical integration, is the process of ap-
proximating the definite integral of a given function. Typically this approximation
takes the form of a weighted sum of function evaluations, so that an n-point quadra-
ture rule is given by

(1.1)

∫ b

a

f(x)dx ≈
n∑

k=1

wkf(xk)

for some set of nodes {xk} and weights {wk}. There are many different choices for the
nodes and weights, and the Gauss–Legendre rule is defined by the unique choice such
that (1.1) is exact when f is any polynomial of degree 2n− 1 or less. More generally,
a quadrature rule is referred to as “Gaussian” if for some given positive, integrable
weight function w(x), the approximation

∫ b

a

w(x)f(x)dx ≈
n∑

k=1

wkf(xk)

is exact for all polynomials of degree 2n− 1 or less.
Gauss, in 1814, constructed the Gauss–Legendre quadrature rule using hyperge-

ometric functions and continued fractions [17], and Jacobi, twelve years later, noted
the quadrature nodes were precisely the roots of the Legendre polynomial of degree n
[31, 32].1 Now almost all introductory numerical analysis texts show that the Gauss
quadrature nodes are the simple roots of an associated orthogonal polynomial

In this paper we are concerned with Gauss–Jacobi quadrature, associated with
the canonical interval [−1, 1] and the Jacobi weight function

w(x) = (1 + x)α(1− x)β , α, β > −1.
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1An excellent account of the history of Gauss quadrature is given by Gautschi [19].
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Initial guess
from asymp-
totic formulae
(3.3) & (3.6)

Evaluate Pn and
its derivative via

asymptotic formu-
lae (3.9) & (3.12)

Newton
step

Converged
to a root?

Compute
the weight
using (3.1)

no

yes

Fig. 1.1. Algorithm for computing each Gauss–Legendre node and weight by a combination of
Newton’s method and asymptotic formulae. The formulae (3.9) and (3.12) refer to “interior” and
“boundary” formulae, where the “boundary region” is simply the ten nodes nearest to ±1. An almost
identical technique for more general Gauss–Jacobi quadratures is discussed in section 3.3.

Table 1.1

Errors (absolute, relative maximum, maximum relative, and quadrature—see section 4 for defi-
nitions) and computational time for computing n = 102, . . . , 106 Gauss–Legendre nodes and weights
using the algorithm described in this paper on a 2011 1.8-GHz Intel Core i7 MacBook Air with
MATLAB 2012a.

n εabs{xk} εrm{wk} εmr{wk} εquad{xk, wk} Time (secs)

100 1.18e-16 1.15e-16 1.25e-15 1.71e-16 0.0085
1,000 1.63e-16 8.27e-16 1.92e-15 1.11e-16 0.0105
10,000 1.78e-16 1.14e-15 1.69e-15 1.11e-16 0.0261
100,000 2.22e-16 1.09e-15 1.48e-15 4.44e-16 0.2600
1,000,000 3.33e-16 2.70e-15 3.02e-15 6.66e-16 2.3198

In this case, the nodes {xk} are the roots of the Jacobi polynomial P (α,β)
n , and the

weights {wk} are given by [45, p. 352]

(1.2) wk =
Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!

2α+β+1

(1− x2k)
[
P

(α,β)′
n (xk)

]2 , k = 1, . . . , n.

Thus, computing Gauss–Jacobi nodes and weights reduces to finding the roots of a
Jacobi polynomial and evaluating its derivative.

Due to the fast convergence of Gauss quadrature rules, particularly when f is
C∞ or analytic, most applications typically require only a relatively small number of
nodes, say 5–200. Similarly, adaptive quadrature methods which perform recursive
subdivision also do so with only a small number of points. However, there is some
call for large global Legendre and Jacobi grids, for example, in spectral methods
and high-degree polynomial integration [46, 53]. Furthermore, the relation between
the quadrature and barycentric weights, as pointed out by Wang and Xiang [50,
Theorem 3.1], allows the stable evaluation of Legendre and Jacobi interpolants.

Existing approaches for computing the nodes and weights, some of which have
been widely used for many years, suffer from O(n2) complexity or error which grows
with n, which can be limiting when n is large. In this paper we develop a new technique
which utilizes asymptotic formulae for both accurate initial guesses of the roots and
efficient evaluations of the degree n Jacobi polynomial P (α,β)

n inside Newton’s method.
With this new algorithm it is possible to compute the nodes and weights of Gauss–
Jacobi quadrature rules in just O(n) operations to almost full double precision for
any n ≥ 100.

Furthermore, the algorithm can be easily parallelized or vectorized, making it very
efficient in a variety of architectures and languages. A simple flowchart of the algo-
rithm is shown in Figure 1.1 and a demonstration of the accuracy and computational
time is given in Table 1.1.
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A654 NICHOLAS HALE AND ALEX TOWNSEND

This paper has the following structure: In section 2 we briefly review some exist-
ing methods and implementations for computing Gauss quadrature nodes and weights
before introducing our new algorithm, first for the special case of Gauss–Legendre
quadrature, and then generalized to Gauss–Jacobi, in section 3. Section 4 demon-
strates the accuracy and efficiency of the computed quadrature rule as compared
with a selection of the existing methods from section 2 and some extended precision
computations. In section 5 we discuss further issues related to Gaussian quadrature
and the new algorithm, such as extension to Radau, Lobatto, Hermite, and Laguerre
quadratures, before concluding in section 6.

2. Existing methods. The traditional, and by far most widely used, method
for computing Gauss quadrature nodes and weights is the Golub–Welsch (GW) algo-
rithm [24], based upon the observation of Wilf [51, p. 55], which exploits the three-term
recurrence relations satisfied by all real orthogonal polynomials. The relation gives
rise to a symmetric tridiagonal matrix, the eigenvalues of which are the nodes of the
quadrature rule, with the weights easily determined from the corresponding eigen-
vectors. The GW algorithm takes O(n2) operations to solve this eigenvalue problem
by taking advantage of the structure of the matrix and noting that only the first
component of the normalized eigenvector need be computed. The complexity can
be reduced to O(n logn) if only the nodes are required [26]. However, MATLAB

implementations of the GW/Wilf approach using eig are unable to take advantage
of the special matrix structure, and the computational complexity is in fact O(n3).
Swarztrauber [44] has previously observed that the Golub–Welsch method leads to an
O(n) error in the Gauss–Legendre nodes and an O(n2) error in the weights, but our
numerical experiments in Figure 2.1 suggest these may in fact be closer to O(

√
n) for

the nodes and O(n3/2) for the relative maximum error in the weights. One can further
reduce error in the weights by using the recurrence to evaluate derivative values as
a postprocessing step [34] or by modifying the weight formula [54]. Implementations
can be found, for example, in [18, 25].

An alternative approach is to simply use the same three-term recurrence to com-
pute Newton iterates which converge to the zeros of the orthogonal polynomial [39, 42].
Since the recurrence requires O(n) operations for each evaluation of the degree n poly-
nomial and its derivative, we again expect the total complexity for all the nodes and
weights to be O(n2). Here we observe a relative maximum error in the weights of
O(n) and that the nodes can be computed to essentially machine precision indepen-
dently of n. Initial guesses for the Newton iterations are discussed in section 3.1.
Implementations can be found in [4, 14], and a further variant has been proposed
[44]. For convenience, we refer to this as the REC algorithm. .

The current state of the art is the Glasier–Liu–Rohklin (GLR) algorithm [23],
which computes all the nodes and weights of the n-point quadrature rule in a total
of O(n) operations. This also employs Newton’s method, but here the function and
derivative evaluations are computed with n-independent complexity by sequentially
hopping from one node to the next using a local 30-term Taylor series approxima-
tion generated from the second-order differential equation satisfied by the orthogonal
polynomial. The GLR algorithm is very fast, but its sequential nature makes it dif-
ficult to parallelize or to vectorize for array-based languages like MATLAB. Here
we again observe that the relative maximum error in the weights grows like O(n).
Implementations can be found in [10, 46].

Figure 2.1 compares both the accuracy of each of these algorithms as n is in-
creased, and Table 2.1 summarizes these data. Note that in Figure 2.1 we show the
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Fig. 2.1. Observed error in computing Gauss–Legendre nodes and weights. GW uses the
dgauss routine from the ORTHPOL library [18], REC is glfixed from the GSL library [14], GLR is
a Fortran implementation supplied by the authors of [23], and NEW is a MATLAB implementation
of the algorithm presented in this paper. The C and Fortran codes are interfaced with MATLAB

via MEX files. See Figure 4.3 for analogous plots of quadrature error and computational time.

Table 2.1

Observed errors and computational complexity when computing Gauss–Legendre nodes and
weights (see Figures 2.1 and 4.3) using the four algorithms described in this paper. Here, and
throughout, O(1) denotes a number independent of n. See section 4 for definitions of the error
measures.

Algorithm εabs{xk} εrm{wk} εmr{wk} εquad{xk, wk} Time

GW O(√
n
) O(

n3/2
) O(

n2
) O(n) O(

n2
)

REC O(1) O(n) O(
n2

) O(√
n
) O(

n1.7
)

GLR O(1) O(n) O(
n2

) O(
n0.66

) O(n)

NEW O(log(log(n))) O(log(log(n))) O(1) O(1) O(n)

maximum relative error, rather than the relative maximum. Full definitions of the
error measures and further discussion of these results can be found in section 4. We
note that while the three algorithms mentioned above can be used in a more general
setting, the algorithm presented in this paper requires only O(n) operations to com-
pute an n-point Gauss–Jacobi quadrature rule with absolute and maximum relative
errors in both the nodes and weights that are essentially independent of n.

3. New method. Similarly to both the REC and GLR approaches, our new
method is based upon Newton’s method for finding roots of a univariate function.
However, the difference here is in how we evaluate the Jacobi polynomial and its
derivative, where we take the premise that n is large and employ asymptotic expan-
sions. Bogaert, Michiels, and Fostier [7] have recently explored this idea in the context
of fast evaluation of Legendre series (see the “note added in proof” following section 6
for further details).

We now briefly discuss some details of Newton’s method relevant to this ap-
plication before introducing the asymptotic expansions of the Legendre and Jacobi
polynomials of large degree.

3.1. Newton’s method. It is well known that the Legendre and Jacobi nodes
cluster quadratically near ±1, and that this can have adverse affects on their numerical
computation. For extremely large n the clustering eventually leads to coalescence on
the discrete floating point scale, so that if, for fun, the billionth Gauss–Legendre
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A656 NICHOLAS HALE AND ALEX TOWNSEND

quadrature rule is constructed, then many of the nodes near ±1 are indistinguishable.
To be more precise, points begin to coalesce once n �

√
1/εmach, where εmach is

the precision used to store the nodes, meaning one would rarely expect to use more
than this many points in practice. Relatedly, cancellation in the

(
1− x2k

)
term in the

denominator of (1.2) near ±1 can make accurate computation of the weights difficult.
Swarztrauber has advocated modifying the Golub–Welsch method to compute the

approximately equally spaced points in the transplanted θ-space, θk = cos−1 xk, to
avoid this clustering [44]. For this reason, and also because the asymptotic expansions
of Legendre polynomials are most naturally defined in terms of Pn(cos θ), we also
choose to work in θ-space. We immediately note that a possible downside of working
in this θ-space is that it is only possible to obtain an absolute accuracy of machine
epsilon near x = 0, where θ ≈ π/2. In x-space one can obtain a better relative
accuracy near the origin, but this is rarely required, and often comes at the expense
of accuracy of the weights near ±1.

Thus, θ
[0]
k , an initial guess to the kth root is chosen and successive iterates con-

structed via

θ
[j+1]
k = θ

[j]
k − Pn(cos θ

[j]
k )
(
− sin θ

[j]
k P ′

n(cos θ
[j]
k )
)−1

, j = 0, 1, 2, . . . .

Once the iterates have converged, the nodes are given by xk = cos θk and the weights
by

(3.1) wk =
Cn,α,β

(1− x2k) [P
′
n(xk)]

2 =
Cn,α,β[

d
dθPn(cos θk)

]2 ,
where

(3.2) Cn,α,β = 2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
.

Note that the expression in θ-space avoids the (1− x2) term in the denominator that
is susceptible to round-off error near ±1. While there are a number of mathematically
equivalent formulae for the weights [44], we find (3.1) advantageous both because the
required derivative must be computed to calculate a Newton update, and because it
is less susceptible to errors in the node locations [54].

Since the zeros of the orthogonal Jacobi polynomial are simple, the Newton iter-
ates converge quadratically when started at a sufficiently good initial guess. Petras
[39] has shown that, for the Gauss–Legendre nodes, very simple initial guesses, such
as the Chebyshev points, are good enough for convergence. However, better initial
guesses will require fewer Newton iterations, and these can be obtained from asymp-
totic approximations for the roots. In the next section we shall see that there are
two regimes for the asymptotic expansions: an interior expansion and a boundary
expansion (see Figure 3.2), and the same is true, and indeed strongly related [16], for
the initial guesses. Furthermore, since all Jacobi polynomials satisfy the reflection
relation

P (α,β)
n (−x) = (−1)nP (β,α)

n (x),

we need only consider x ∈ [0, 1), i.e., θ ∈ (0, π/2]. To this end we introduce the
notation k̄ = n− k+ 1, so that xk̄ is the kth closest node to x = 1. Then, away from
x = 1, there are formulae for the Gauss–Legendre nodes given by Tricomi [49],

(3.3) xk̄ =

{
1− (n− 1)

8n3
− 1

384n4

(
39− 28

sin2 φk

)}
cosφk +O(n−5),

D
ow

nl
oa

de
d 

08
/0

7/
13

 to
 1

29
.6

7.
18

6.
98

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST COMPUTATION OF GAUSS-JACOBI QUADRATURES A657

01020304050
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

k̄

(3.3)
(3.4)
(3.5)
(3.6)

0 0.2 0.4 0.6 0.8 1
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

 n = 100

E
rr

or

 n = 250
 n = 500
 n = 1000
 n = 2000

x

Fig. 3.1. Accuracy of asymptotic Legendre root approximations (3.3)–(3.6) for the 50 roots
nearest to x = 1 (left) and the interval [0, 1] (right), with n = 100, 250, 500, 1000, 2000 (descending).
An optimal choice would involve a selection of three of the formulae, but since an accuracy of below
the root of machine precision is sufficient for our purposes we simply choose (3.3) when x ≤ 1/2
and (3.6) when x > 1/2.

where φk = (k − 1/4)π/(n+ 1/2), and by Gatteschi and Pittaluga [16],

(3.4) xk̄ = cos

{
φk +

1

4(n+ 1/2)2

(
1

4
cot

φk
2

− 1

4
tan

φk
2

)}
+O(n−4).

Although (3.3) is a higher-order approximation, (3.4) generalizes (with some restric-
tions on α and β) to the Gauss–Jacobi case (see (3.19)). For nodes near x = 1, there
are formulae given by Gatteschi [15],

(3.5) xk̄ = cos

{
jk
ν

(
1− 4

720ν4
(
j2k/2− 1

))}
+ j5kO(n−7),

where ν =
√
(n+ 1/2)2 + 1/12, and by Olver [38, Ex. 12.5],

(3.6) xk̄ = cos

{
ψk +

ψk cot(ψk)− 1

8ψk(n+ 1/2)2

}
+ j2kO(n−5), ψk =

jk
n+ 1/2

,

where jk is the kth root of J0(x), the Bessel function of the first kind. The roots
of J0(x) are independent of n so they can be precomputed and tabulated [22] or
computed on the fly [8]. Both (3.5) and (3.6) can be generalized to roots of more
general Jacobi polynomials. These results, and many others, can be found in a survey
of Gatteschi’s work [21].

Lether [33] investigates which of the above approximations to use for each k, and
an empirical rule suggested by Yakimiw [54] is to use (3.5) when k̄ ≤ �0.063(n+33)(n−
1.5)/n� and (3.3) otherwise. However, Figure 3.1 (left) shows the accuracy of the 50
nodes nearest x = 1 for a range of n much larger than that considered by Lether,
and suggests that, except for a very small number of the points at the boundary,
(3.6) gives better accuracy than (3.5). In particular, using the rule of thumb that
jk ∼ kπ, balancing the error terms in (3.5) and (3.6) confirms this crossover occurs
when k̄ ≈ n2/3/π.

Rather than concoct a complicated optimal choice for a given k and n, we simply
observe that Figure 3.1 (right) suggests that (3.3) and (3.6) cross when x ≈ 1/2, and
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A658 NICHOLAS HALE AND ALEX TOWNSEND

Boundary Region: Bessel−like

Interior Region: Trig−like

Fig. 3.2. Comparing the degree-20 Legendre polynomial (upper) with the first term in the asymp-
totic formulae (3.9) and (3.12) (lower). In the interior of the domain, Legendre polynomials can be
well approximated by trigonometric functions, whereas near the boundary region they more closely
resemble Bessel functions. Even for n = 20 the asymptotic expansions are good approximations.

choose θ
[0]
k = arccos(x

[0]
k ), where

x
[0]
k =

{
(3.3) for x ≤ 1/2 (i.e., θ ≥ π/3) ,

(3.6) for x > 1/2 (i.e., θ < π/3) .

3.2. Gauss–Legendre. Gauss–Legendre is the most commonly used of the Gaus-
sian quadrature rules. It corresponds to the constant weight function w(x) = 1, and
hence gives rise to the approximation (1.1). The nodes are the zeros of the Legendre
polynomial Pn(x), and the formula (1.2) for the weights simplifies to

(3.7) wk =
2

(1− x2k) [P
′
n(xk)]

2 =
2[

d
dθPn(cos θk)

]2 .
By symmetry the nodes and weights are reflected about x = 0 and one needs only
compute those in [0, 1) or, equivalently, θ ∈ (0, π/2]. The derivative of the Legendre
polynomial, P ′

n, satisfies the recurrence relation

(1− x2)P ′
n(x) = −nxPn(x) + nPn−1(x)

or, equivalently in the θ-variable,

(3.8) − sin θ
d

dθ
Pn(cos θ) = −n cos θPn(cos θ) + nPn−1(cos θ).

To evaluate Pn (and Pn−1 for d
dθPn), we use two different asymptotic formulae,

which we refer to as the interior and boundary expansions. The interior expansion
(3.9) involves only elementary functions and has readily computable coefficients, but
is not valid for x near ±1. Conversely, the “boundary” expansion (3.12), which is in
fact valid for all θ ∈ [0, π2 ], involves Bessel functions and only the first few coefficients
are known in closed form. Figure 3.2 shows the first term in each of these expansions.

3.2.1. Interior asymptotic formula. The interior asymptotic formula we use
was derived by Stieltjes in 1890 from a contour integral representation for the Legendre
polynomial [43]. It is given by

(3.9) Pn(cos θ) = Cn

M−1∑
m=0

hn,m
cos(αn,m)

(2 sin θ)m+ 1
2

+Rn,M (θ) ,
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where αn,m =
(
n+m+ 1

2

)
θ − (m+ 1

2

)
π
2 ,

(3.10) Cn =
4

π

n∏
j=1

j

j + 1/2
=

√
4

π

Γ(n+ 1)

Γ (n+ 3/2)
,

and

hn,m =

m∏
j=1

(j − 1/2)2

j(n+ j + 1/2)
, m > 0,

with hn,0 = 1. Szegő [45] bounds the error term in (3.9) by

(3.11) |Rn,M (θ)| < Cnhn,M
max{| cos θ|−1, 2 sin θ}

(2 sin θ)M+ 1
2

.

Another asymptotic formula2 was derived by Darboux in 1878 [11], but Olver [37]
shows that although this expansion approximates Pn(cos θ) well forM 
 n, it actually
converges to 2Pn(cos θ) as M → ∞.

Stieltjes’ expansion (3.9) converges to Pn(cos θ) in θ ∈ [π/6, 5π/6] and diverges
otherwise [43]. In practice, a finite number of terms are taken and Szegő [45] argues
that the interior expansion can be used for almost the whole interval [0, π]. We discuss
this issue further in section 3.2.4.

The error bound (3.11) is so similar to the terms in the expansion that in loop-
based languages it can be checked for each θ at minimal cost. In array-based languages
we use a fixed M for all θ, even though the error bound reveals that fewer terms can
be taken when θ ≈ π/2. Since the terms are computationally cheap, we suggest
computing the first 20 and then truncating using (3.11) evaluated at the smallest θ
in the interior region.

3.2.2. Boundary asymptotic formula. Unfortunately, there is no asymptotic
expansion of the Legendre polynomials involving only elementary functions that is
valid near x = ±1 [35]. The boundary asymptotic formula we use was obtained by
Baratella and Gatteschi [5], based on the method described by Olver [36], and is
an expansion in Bessel functions of the first kind. It is derived by considering the
second-order differential equation satisfied by Legendre polynomials, and is given by

(3.12) Pn(cos θ) =

√
θ

sin θ

(
J0(ρθ)

M∑
m=0

Am(θ)

ρ2m
+ θJ1(ρθ)

M−1∑
m=0

Bm(θ)

ρ2m+1

)
+ Sn,M (θ),

where ρ = n+ 1
2 and

Sn,M (θ) =

{
θ

5
2O (n−2M

)
, 0 < θ ≤ c

n ,

θO
(
n−2M− 3

2

)
, c

n ≤ θ ≤ π
2 .

Only the first few terms are known explicitly:

(3.13) A0 = 1, B0 =
1

4
g(θ), and A1(θ) =

1

8
g′(θ)− 1

8

g(θ)

θ
− 1

32
g2(θ),

2Both Darboux’s and Stieltjes’ formulae can be more readily located in Theorems 8.21.4 and
8.21.5 of [45], respectively.
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Fig. 3.3. Error in evaluation of P100(cos θk) (solid line) and d
dθ

P100(cos θk) (dashed line:
relative) using the interior asymptotic formula (3.9) with M = 1, 3, 5, 7, 15 (left and center) and the
boundary asymptotic formula (3.12) with M = 0, 1, 2, 3 (right). Here the θk are the approximations
to the Legendre roots from (3.6), and the reported error is as compared to an extended precision
computation. The vertical solid and dashed lines are at x = cos(π/6) and (x11+x10)/2, respectively.

where g(θ) = (θ cot θ − 1) /2θ, but extra terms can be calculated numerically from
the relations given in [5]. In practice we use Chebyshev interpolants to compute the
indefinite integrals required for terms up to M = 3. This is enough to evaluate (3.12)
to around machine precision near the boundaries for n ≥ 100 and is far from the
divergent regime of the asymptotic formula (see Figure 3.3). In fact, for n � 250,
only the first three terms are required (M = 2), and for n � 4000 only the first two
(i.e., those which are known explicitly).

In [7] Bogaert, Michiels, and Fostier derive an alternative asymptotic expansion
that contains terms of the form ynJn(x).

3.2.3. Computational issues.

Computing derivatives. To compute the Newton updates and quadrature
weights we must evaluate d

dθPn(cos θ) which, by (3.8), can be computed from Pn

and Pn−1. In the interior asymptotic formula (3.9) one finds the constants are con-
veniently related by

Cn−1 =
n+ 1/2

n
Cn and hn−1,m =

n+m− 1/2

n+ 1/2
hn,m,

so that the derivative can be cheaply evaluated at the same time as Pn(cos θ) using

d

dθ
Pn(cos θ) ≈ Cn

M−1∑
m=0

hn,m
(m− 1/2) cot θ cosαn,m + (n+m− 1/2) sinαn,m

(2 sin θ)m+ 1
2

.

While Newton’s method will not suffer from small inaccuracies in evaluating
derivatives [47], it is clear from (3.7) that the relative error in evaluating the quadra-
ture weights is proportional to the relative error in evaluating d

dθPn(cos θk). Thus to
obtain an O(1) relative error in the weights, we require an O(1) relative error in the
derivative evaluations. Since hn,m = O(n−m) will hide the errors in further terms, we
need only look at the m = 0 term, where we observe sinαn,0 = sin((n+ 1

2 )θk̄+π/4) =
sin(kπ + O(n−1)), which can easily be evaluated with O(1) accuracy using Taylor
series expansion about kπ. Double-angle formulae can be used to avoid evaluating
sines and cosines of large arguments in the other sinαn,m and cosαn,m terms.
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The derivative of the boundary formula can also be computed using (3.8), requir-
ing the additional evaluation of the Bessel functions J0 and J1 at (n− 1

2 )θ. The first
term when evaluating the derivative at the nodes is then given by

(3.14)
d

dθ
Pn(cos θk̄) = −n

√
θk̄

sin θk̄

[
cos θk̄J0(ρθk̄)− J0((ρ− 1)θk̄)

sin θk̄

]
+ · · · ,

and by the same argument as above for the interior formula, we require an O(1) error
in the term in the square parenthesis to obtain an O(1) relative error in the weights.
Since, for a fixed k, θk̄ and sin θk̄ are O(n−1), we must then demand an O(n−1)
error in the numerator of this term. Standard methods of evaluating J0(ρθk̄) and
J0((ρ − 1)θk̄) in double precision typically give only an absolute accuracy of 14–15
digits, and so are not sufficient.

Instead we observe that if J0((ρ − 1)θk̄) is computed by evaluating the Taylor
series around ρθk̄, (3.14) becomes

d

dθ
Pn(cos θk̄) = −n

√
θk̄

sin θk̄

[
cos θk̄ − 1

sin θk̄
J0(ρθk) +

θk̄
sin θk̄

∞∑
l=1

J
(l)
0 (ρθk̄)

l!
(−θ)l−1

]
+ · · · ,

where the required derivatives are given in closed form by the relation [35, eq. (18.6.7)]

J (l)
ν (z) = 2−l

l∑
j=0

(−1)j
(
l

j

)
Jν−l+2j(z).

Now, since (cos θk̄ − 1)/ sin θk̄ ∼ −θk̄/2 and, by (3.6), θk̄ ∼ jk/ρ, the O(1) errors in
computing J0(ρθk) in Pn and Pn−1 cancel (to O(n−1)), and one obtains a relative error
of O(1) for the derivative evaluation. This cancellation highlights the importance of
choosing the right form of the weight formula (3.1).

The ratio of gamma functions. The constant Cn in (3.10) for the interior
asymptotic formula requires some careful computation. The first expression in (3.10)
is a product of n numbers which evaluates to O(

√
n), and an error that grows like

O(
√
n) might be expected if this is computed directly. The second expression is the

ratio of two gamma functions, Γ(n+ 1)/Γ (n+ 3/2), which can easily overflow if n is
large.

To compute this constant accurately, and in particular with an error independent
of n, we again take advantage of the fact that n is large and use Stirling’s series [12]
for the approximation of gamma functions:

Γ(z + 1) ∼ zz+
1
2 e−z

√
2πS(z), |arg(z)| < π,

where the first four terms of S(z) are

(3.15) S(z) = 1 +
1

12z
+

1

288z2
− 139

51840z3
− 571

2488320z4
+O(z−5).

In slightly more generality, we substitute Stirling’s series in the ratio of Γ(n+ 1) and
Γ(n+ 1 + α) and simplify to obtain

(3.16)
Γ(n+ 1)

Γ(n+ 1 + α)
∼
√

n

n+ α

(
n

n+ α

)n+α ( e
n

)α S(n)

S(n+ α)
.
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Fig. 3.4. Error in Gauss–Legendre nodes (top) and weights (bottom) for n = 100 using interior
and boundary asymptotic formulae. The GLR results are included for reference. As expected, the
interior formula diverges near the boundary, but only in the designated boundary region (dashed ver-
tical line). Although GLR achieves better relative accuracy in the nodes near x = 0, the asymptotic
formulae give more accurate weights, particularly near x = 1 (see Figure 3.5).

The term with the exponent n+ α can then be evaluated using the series expansion

(3.17) (n+ α)
n+α

= nn+α exp

⎛
⎝(n+ α)

∞∑
j=1

(−1)j

j

(α
n

)j⎞⎠ ,
which can be derived by considering the standard expansion of log(1 + α/n). This
approach turns out to alleviate overflow concerns and to be very accurate, and we
note that although Stirling’s series is not convergent, 10 terms in the function S(z)
are more than enough to achieve double precision in the evaluation of (3.10) for all
n ≥ 100. Many authors have proposed alternative ways of computing (3.10) [2, 7, 38],
but (3.16) has the advantage of being readily applicable in the Gauss–Jacobi formulae
that we will see shortly.

3.2.4. Preliminary results. Since the interior formula contains only elemen-
tary functions and has readily computable coefficients, we find it much easier to work
with than the boundary formula, and aim to use it for as many of the nodes as possi-
ble. In particular, we find the computation cost per node in the boundary formula to
be approximately 1000 times that of the interior formula. Unfortunately, the interior
formula (3.9) diverges as M → ∞ for x > cos(π/6) [43], and so formally this should
define the interior region. However, in practice, and in agreement with Szegő [45], we
find that for the finite number of terms required to achieve an accuracy of machine
precision, (3.9) can be used to evaluate much more closely to the boundary than this
suggests (see Figure 3.3). Therefore, based upon heuristic observations such as those
in Figures 3.3–3.5, we define the regions as

interior region: {x11, . . . , xn−10} ,(3.18)

boundary region: {x1, . . . , x10} ∪ {xn−9, . . . , xn} .
That is, the boundary region consists of the ten nodes nearest the boundary.

Figure 3.4 shows the error in computing the Gauss–Legendre nodes and weights
for n = 100 using both in the interior and boundary formulae on the interval x ∈ [0, 1],
with the GLR method also included for reference. As expected, the interior formula
diverges near the boundary, but importantly to the right of the vertical dashed line
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Fig. 3.5. Error in the 13 rightmost Gauss–Legendre weights for n = 100, 500, 1000, 5000, 10000.
We see that even as n is increased, the interior formula gives good results for all but the final five
or six nodes. In practice, we define the “boundary region” as the 10 nodes nearest the boundary.

depicting the proposed border between the interior and boundary regions. Although
GLR achieves better relative accuracy in the nodes near x = 0, the asymptotic for-
mulae are within a factor of two or three of machine precision and give more accurate
weights near the boundary. Figure 3.5 shows a close-up of the nodes near x = 1
for larger values of n and demonstrates both that (3.18) is a reasonable choice for
defining the boundary region, and that the relative error in the weights computed by
the boundary formula does not increase with n. More detailed results can be found
in section 4.

3.3. Gauss–Jacobi. The asymptotic expansions in the previous section extend
readily to more general Jacobi polynomials. For α = β �= 0 the polynomials are known
as ultraspherical or Gegenbauer, and simplifications similar to the Legendre case, such
as symmetry of the nodes, can be used for improved efficiency. For α �= β we exploit
the reflection formulae

P (α,β)
n (−x) = (−1)nP (β,α)

n (x), d
dxP

(α,β)
n (−x) = (−1)n−1 d

dxP
(β,α)
n (x),

so that we need only evaluate Jacobi polynomials on the right half of the interval, i.e.,
x ∈ [0, 1), θ ∈ (0, π/2].

Most of the approximations for the roots of the Legendre polynomial can be
generalized to the Jacobi case for use as initial guesses in Newton’s method. Gatteschi
and Pittaluga’s approximation for the roots of P (α,β)

n away from ±1 is given by

(3.19) xk̄ = cos

{
φk +

1

4ρ2

((
1

4
− α2

)
cot

φk
2

−
(
1

4
− β2

)
tan

φk
2

)}
+O(n−4),

for α, β ∈ [− 1
2 ,

1
2

]
, where ρ = n+ (α+ β +1)/2 and φk = (k + α/2− 1/4)π/ρ. Simi-

larly, with jα,k denoting the kth root of Jα(z), the approximation given by Gatteschi
for the nodes near x = 1 becomes

(3.20) xk̄ = cos

{
jα,k
ν

(
1− 4− α2 − 15β2

720ν4
(
j2α,k/2 + α2 − 1

))}
+ j5α,kO(n−7),

for α, β ∈ [− 1
2 ,

1
2

]
, where ν =

√
ρ2 + (1 − α2 − 3β2)/12, and Olver’s approximation

becomes
(3.21)

xk̄ = cos

{
ψk + (α2 − 1/4)

ψk cot(ψk)− 1

2ρ2ψk
− (α2 − β2)

tan(φk/2)

4ρ2

}
+ j2α,kO(n−5)
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Fig. 3.6. Left: Error in approximations (3.19)–(3.21) for the roots of P
(0.1,−0.3)
n (x), with

n = 100, 250, 500, 1000, 2000 (descending). Here the crossover between the interior approximation
(3.19) and Olver’s “boundary” approximation (3.21) doesn’t occur until x ≈ 0.1. Right: Error in

approximation (3.21) for the roots of P
(α,β)
100 (x) for α, β ∈ [−.9999, 2]. Although the accuracy degrades

outside of the interval [−1/2, 1/2], it is still sufficient for convergence of the Newton iteration.

for α > − 1
2 , β > −1− α, where ψk = jα,k/ρ [35, eq. (18.16.8)]. The Bessel roots jα,k

are not required to a high degree of accuracy and can be computed using, for example,
McMahon’s expansion [38, p. 247] or Chebyshev approximations [41]. Figure 3.6
(left) shows the accuracy of each of these approximations for the roots of P (0.1,−0.3)

n .
Although the error terms in (3.19)–(3.21) are only valid for limited ranges of α and
β, Figure 3.6 (right) demonstrates that reasonable approximations are obtained more
generally.

As before, we use an interior asymptotic expansion which involves only elementary
functions, but is not valid near the endpoints, and a boundary asymptotic expansion
involving Bessel functions. The interior asymptotic formula for the Jacobi polynomial
is given by Hahn [27] and takes the form

sinα+
1
2

(
1
2θ
)
cosβ+

1
2

(
1
2θ
)
P (α,β)
n (cos θ)(3.22)

=
22ρ

π
B(n+ α+ 1, n+ β + 1)

M−1∑
m=0

fm(θ)

2m (2ρ+ 1)m
+ Uα,β

M,n(θ),

where ρ = n+ (α+ β + 1)/2, B(α, β) is the beta function,

fm(θ) =
m∑
l=0

Cα,β
m,l

l!(m− l)!

cos (θn,m,l)

sinl
(
1
2θ
)
cosm−l

(
1
2θ
) ,(3.23)

θn,m,l =
1
2 (2ρ+m) θ − 1

2

(
α+ l + 1

2

)
π,

and

Cα,β
m,l =

(
1
2 + α
)
l

(
1
2 − α
)
l

(
1
2 + β
)
m−l

(
1
2 − β
)
m−l

,

where (z)l is Pochhammer’s notation for the rising factorial. For α, β ∈ (− 1
2 ,

1
2 ) the

error term UM,n is less than twice the magnitude of the first neglected term, and for
all n ≥ 2, α, β ∈ (− 1

2 ,
1
2 ), θ ∈ [π/3, 2π/3] the formula (3.22) converges as M → ∞
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[27]. Although [π/3, 2π/3] is significantly smaller than the corresponding interval for
the Legendre polynomial, numerical experiments suggest that in practice (3.22) gives
good approximations in a much larger interval. We note also that the summation in
(3.23), which is not present in the Legendre case, means (3.22) will have a complexity
of O(M2n) compared to the O(Mn) of (3.9). Since, typically, M is 10–20, and
because we no longer have symmetry in the nodes, we should therefore expect the
computation time of the Gauss–Jacobi points to be around a factor of 10–20 longer
than the Gauss–Legendre.

Again, all known asymptotic formulae for Jacobi polynomials valid near the
boundaries involve special functions, and we use the boundary asymptotic expansion
involving Bessel functions given by Baratella and Gatteschi [5]:

(3.24)

sinα+
1
2
(
1
2θ
)
cosβ+

1
2
(
1
2θ
)
P (α,β)
n (cos θ)

=
Γ (n+ α+ 1)

ραn!

√
θ

2

(
Jα(ρθ)

M∑
m=0

Am(θ)

ρ2m
+ θJα+1(ρθ)

M−1∑
m=0

Bm(θ)

ρ2m+1

)
+ O (n−2M

)

for α, β > −1, where ρ = n+ (α+ β + 1)/2, Jα and Jα+1 are Bessel functions of the
first kind,

g(θ) =
(
1
4 − α2

) (
cot
(
1
2θ
)− 2/θ

)− ( 14 − β2
)
tan
(
1
2θ
)
,

A0(θ) and B0(θ) are as in (3.13), and

A1(θ) =
1

8
g′(θ)− 1 + 2α

8

g(θ)

θ
− 1

32
g2(θ).

Similarly to the Legendre case, only these first three terms are known explicitly, but
more can be computed numerically using the relations given in [5]. We note that
there are other asymptotic formulae involving Bessel functions [3, 13, 52], but these
typically require roughly twice as many terms as (3.24) to obtain a similar asymptotic
error reduction.

The relation for the derivative of the Jacobi polynomials is a little more compli-
cated than for the Legendre polynomials:

(2n+ α+ β)(1 − x2)
d

dx
P (α,β)
n (x)

= n(α− β − (2n+ α+ β)x)P (α,β)
n (x) + 2(n+ α)(n+ β)P

(α,β)
n−1 (x),

but the ideas discussed in section 3.2.3 still apply.

3.3.1. Computational issues.

The ratio of gamma functions. This time it is the constant in front of the
boundary asymptotic formula which contains the ratio of gamma functions Γ(n+α+
1)/n!, but this can be dealt with in the same way as discussed in section 3.2.3. Similar
ideas can also be used to compute the beta function in (3.22) as

(3.25) 22nB(n+ α+ 1, n+ β + 1) =
22nΓ (n+ α+ 1)Γ (n+ β + 1)

Γ (2n+ α+ β + 1) (2n+ α+ β + 1)
.

D
ow

nl
oa

de
d 

08
/0

7/
13

 to
 1

29
.6

7.
18

6.
98

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A666 NICHOLAS HALE AND ALEX TOWNSEND

−1

10
−15

10
−10

10
−5

10
0

interior

x10.5 −1 −0.5 0 0.5 1

interior

 1
 3
 5
 7
15

x
1

interior

x10.5 −1 −0.5 0 0.5 1

10
−15

10
−10

10
−5

10
0

boundary

0
1
2
3

x

Fig. 3.7. Error in evaluating the Jacobi polynomial P
(0.1,−0.3)
100 and its derivative using the

asymptotic formulae (3.22) and (3.25). Clearly the interior formula (3.22) can in practice be used
much closer to the boundary than the convergence region of cos(5π/6) < x < cos(π/6) suggests
(vertical solid line). The first and third panels show that, as with the Legendre polynomial, the
boundary formula is only needed for the ten nodes nearest the boundary (vertical dashed lines).

In particular, again using Stirling’s series to approximate the gamma functions and
then canceling common terms, we find this ratio may be expressed as

2(1−α−β)/2
√
π exp

⎛
⎝ ∞∑

j=1

qα,βj

nj

⎞
⎠
√

(n+ α)(n+ β)

2n+ α+ β

S(n+ α)S(n+ β)

S(2n+ α+ β)(2n+ α+ β + 1)
,

where S(z) is as in (3.15) and

qα,βj =
(−1)j+1

j(j + 1)

(
αj+1 + βj+1 + 2

(
α+ β

2

)j+1
)
,

which arrises from similar expansions to (3.17). Each of the terms, and hence (3.25),
can be computed accurately and stably.

One final constant requiring careful computation in the Jacobi case is that ap-
pearing in (3.2) for the quadrature weights,

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)n!
.

Here we note that this ratio is precisely of the form described by Bühring [9, eq. (3)],
with c = 0 and n→ n+ 1, and again asymptotic approximations can be used.

We again stress that although these are asymptotic formulae and not necessarily
convergent, they can readily achieve an accuracy of 16 digits for any n ≥ 100, which
is suitable for our purposes.

3.3.2. Preliminary results. In the Jacobi case the use of the interior formula
is now seemingly hindered by the two constraints that convergence as M → ∞ re-
quires both α, β ∈ (−1/2, 1/2) and θ ∈ [π/3, 2π/3]. However, similarly to the interior
asymptotic formula for the Legendre polynomial, we find that in practice this sec-
ond constraint can be ignored for the finite M needed for machine precision, and
that the boundary formula is only required for the ten nodes nearest the boundary.
Figure 3.7 shows the accuracy of the interior and boundary asymptotic formulae for

P
(0.1,−0.3)
100 (cos θ

[0]
k ) and d

dθP
(0.1,−0.3)
100 (θ

[0]
k ), and justifies this choice of boundary region.

In section 4 we provide evidence that the restriction α, β ∈ (− 1
2 ,

1
2 ) can also be largely

ignored.
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Fig. 4.1. Error in the computed Gauss–Legendre nodes (left: absolute) and weights (center and
right: relative maximum) for n = 100. The rightmost panel shows the error in the last ten weights.

4. Results. We consider a number of different measurements of the error:

absolute error : εabs{xk} = max
k=1,...,n

|xk − xtruek |;

relative maximum error : εrm{wk} =
maxk |wk − wtrue

k |
maxk |wtrue

k | ;

maximum relative error : εmr{wk} = max
k=1,...,n

∣∣∣∣wk − wtrue
k

wtrue
k

∣∣∣∣ .
For comparative purposes we also include a measure, similar to that in [23], which
weighs the accuracy of the quadratures rather than the nodes and weights directly.
Recall that an n-point Gauss rule is exact for polynomials of degree up to 2n− 1 and
hence, for 0 ≤ i, j < n,∫ 1

−1

(1 − x)α(1 + x)βP (α,β)
s (x)P

(α,β)
t (x)dx =

n∑
k=1

wkP
(α,β)
s (xk)P

(α,β)
t (xk)

=

{
Cn,α,β

2n+α+β+1 if s = t,

0 otherwise,

where Cn,α,β is the constant in (3.2). This identity can then be used to measure the
accuracy of the quadrature rule by selecting arbitrary indices I = {i1, i2, . . . } and
defining

εquad{xk, wk} = max
s,t∈I

∣∣∣∣∣ δstCn,α,β

2n+ α+ β + 1
−

n∑
k=1

wkP
(α,β)
s (xk)P

(α,β)
t (xk)

∣∣∣∣∣ ,
where δst is the Kronecker delta function. For convenience and reproducibility we
choose the set I to be the first 11 Fibonacci numbers (or fewer, if they are greater
than n in magnitude), and to avoid introducing additional error we evaluate the
polynomials in extended precision. Recall that for α = β = 0, Cn,α,β = 2.

We now compare our method against the other algorithms described in section 2,
using the ORTHPOL [18] implementation of the GW algorithm, the GSL imple-
mentation of the recurrence relation [14], and a Fortran implementation of the GLR
algorithm supplied by the authors of [23]. Figure 4.1 shows the absolute error in the
nodes and maximum relative error in the weights for n = 100, and Figure 4.2 shows
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Fig. 4.2. Error in the computed Gauss–Legendre nodes (left: absolute) and weights (center and
right: relative maximum) for n = 1000.
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Fig. 4.3. Maximum quadrature error (left) and computational time (right) in computing Gauss-
Legendre nodes and weights. See Figure 2.1 for node and weight errors. Note that the timings
here are for implementations in different programming languages, and should not be used for direct
comparison.

the same for n = 1000. Whereas GLR and REC obtain good relative precision in
the nodes near x = 0, our Newton iteration operates in θ-space and we only obtain
good absolute accuracy. However, the error is below machine precision, and uniform
throughout the interval [−1, 1]. The error in the weights is also uniform throughout
the interval and, particularly near the boundaries, significantly lower than that of
the other methods. Figures 2.1 and 4.3 investigate the performance of each of the
methods as n is increased, and Table 1.1 summarizes the results of our new method.
An almost identical table for the GLR method can be found in [23, Table 3]. In
particular, we note the method described in this paper has a complexity of only O(n)
and that the errors in the nodes and weights are essentially3 n-independent.

Figure 4.4 repeats Figure 4.1 for Gauss–Jacobi quadrature with n = 1000, α = 0.1,
and β = −0.3, where here we compare against Chebfun implementations of GW, REC,
and GLR. Again we see that the new method produces a good absolute accuracy of

3We observe in Figure 2.1 an O(log(log(n))) growth in the error of the nodes. The error ap-
pears to arise in nodes near x = 0, and we are as yet unable to account for it. However, since
log(log(realmax)) < 7 in MATLAB (and furthermore log(log(

√
2−52)) < 3), it is unlikely that this

will present any practical limitations.
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Fig. 4.4. Error in the computed Gauss–Jacobi nodes (left) and weights (center and right) for
n = 1000, α = 0.1, β = −0.3. The rightmost panel shows the errors for the weights closest to x = −1
(dashed line) and x = 1 (solid line). The rise in error of the few weights near the boundary nodes
can be attributed to error in evaluation of the Bessel function.
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Fig. 4.5. Observed maximum relative errors in the weights in Gauss–Jacobi for α = 0.1, β =
−0.3 (left) and α = 2, β = −0.75 (right). As with the analogous plot for the Gauss–Legendre weights
(Figure 2.1), we see the error in the new algorithm is independent of n.

Table 4.1

Accuracy and computation time for Gauss–Jacobi nodes and weights computed by the algorithm
in this paper for n = 102, . . . , 106 and α = 0.1, β = −0.3. As expected, the computational times are
approximately ten times greater than those in Table 1.1.

n εabs{xk} εrm{wk} εmr{wk} εquad{xk, wk} Time (secs)
100 1.42e-16 3.64e-15 4.52e-14 9.30e-16 0.0418
1,000 2.06e-16 8.83e-15 6.66e-14 7.32e-16 0.0532
10,000 1.11e-16 3.91e-15 6.38e-14 7.46e-16 0.2503
100,000 4.44e-16 3.40e-16 1.16e-14 7.42e-16 1.5685
1,000,000 4.44e-16 6.53e-16 3.50e-14 1.11e-15 15.256

around machine precision for each of the nodes, and an error in the weights lower
than that of the existing methods. Unfortunately, here we find an error of around
10−13 in the weights near the boundary, which appears directly related to the error in
evaluating the Bessel functions Jα and Jβ at these points. However, we find that this
error is fixed independently of n (see Figure 4.5). Tables 4.1 and 4.2 repeat Table 1.1
for Gauss–Jacobi with α = 0.1, β = −0.3 and α = 2, β = −0.75, respectively, and show
that high and essentially n-independent precision is maintained in both the nodes and
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Table 4.2

Accuracy and computation time for Gauss–Jacobi nodes and weights computed by the algorithm
in this paper for n = 102, . . . , 106 and α = 2, β = −.75. Even for α and β outside [− 1

2
, 1
2
], good

accuracy is achieved.

n εabs{xk} εrm{wk} εmr{wk} εquad{xk, wk} Time (secs)
100 2.11e-16 6.77e-15 4.13e-14 4.45e-15 0.0412
1,000 1.46e-16 1.02e-14 4.42e-14 4.49e-15 0.0515
10,000 1.11e-16 8.28e-15 3.53e-14 4.56e-15 0.1858
100,000 1.11e-16 1.23e-15 5.46e-14 4.37e-15 2.0865
1,000,000 1.11e-16 7.01e-15 7.31e-14 4.49e-15 15.713

the weights for the Gauss–Jacobi quadrature rules. As expected, the Gauss–Jacobi
rules take around a factor of 10 longer to compute than the Gauss–Legendre, due to
the extra summation in (3.23).

5. Future extensions. We have concentrated on computing Gauss–Legendre
and Gauss–Jacobi quadrature rules in double precision, but the methodology we have
described can be extended in a number of directions. Here we discuss these briefly.

Higher precision. Throughout this paper we have focused on double precision
accuracy, but quadratic (or even variable) precision could also be achieved using the
same techniques. However, additional terms in the boundary asymptotic formulae
are required as well as a better understanding of when/if the expansions diverge.
Furthermore, since only the first few terms in the boundary expansions are readily
available, the minimum value of n for which full quadratic precision could be reached
would be larger than the n = 100 for double precision.

Gauss–Radau and Gauss–Lobatto quadrature. Gauss–Radau and Gauss–
Lobatto are variations on the Gauss–Legendre quadrature rule where one or more of
the endpoints are preassigned, and the approach discussed in this paper is equally
applicable here. For example, the Gauss–Radau nodes and weights satisfy [1, eq.
(25.4.31)]

Pn−1(xk) + Pn(xk)

1 + xk
= 0, k = 2, . . . n, wk =

{
1

(1−xk)[P ′
n−1(xk)]2

, k = 2, . . . , n,

2
n2 , k = 1

while for the Gauss–Lobatto rule [1, eq. (25.4.32)]

xkPn−1(xk)− Pn(xk)

1− x2k
= 0, k = 2, . . . n−1, wi =

{
2

n(n−1)[Pn−1(xk)]2
, k = 2, . . . , n− 1,

2
n(n−1) , k = 1, n.

Initial guesses can be obtained by noting that the interior Radau nodes are also the

zeros of P
(0,1)
n−1 , and the interior Lobatto nodes are the zeros of P

(1,1)
n−2 [35, eq. (18.9.6)],

for which the approximations in section 3.3 can be used. One could also consider the
more general case of Gauss–Jacobi–Radau [20].

Hermite and Laguerre quadrature. The Hermite and Laguerre polynomials
also have asymptotic expansions [40, 45] which could be used within Newton iterations
to compute Gauss–Hermite and Gauss–Laguerre quadrature nodes and weights. In
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particular, the nodes are roots of Hermite and Laguerre polynomials, Hn(x) and
Ln(x), and the weights are given by

wk =

√
π2n+1n!

[H ′
n(xk)]

2
and wk =

1

xk[L′
n(xk)]

2
,

respectively [1, eqs. (25.4.45) and (25.4.46)]. In practice, one usually works with
normalized Hermite and Laguerre polynomials and scaled quadrature weights to avoid
problems of overflow and underflow [23].

Polynomial evaluation. The asymptotic formulae used for evaluations within
the Newton iterations could also be used to evaluate the P (α,β)

n (xk) at any point
within [−1, 1]. However, a number of the techniques described in this paper rely on
the fact that we are evaluating near a root of the Jacobi polynomial, and would not
apply in general. A few brief experiments suggest that an accuracy of 14–15 digits
can be achieved, again in O(n) operations, but we have not investigated this further.
Bogaert, Michiels, and Fostier [7] apply a similar technique for evaluating Legendre
polynomials.

Barycentric weights. Given n function values f1, . . . , fn at a distinct set of
points x1, . . . , xn, and the barycentric weights {vk}

vk = C

/
n∏

j �=k

(xk − xj) ,

where the constant C is arbitrary, the barycentric interpolation formula [6]

p(x) =

n∑
k=1

vkfk
x− xk

/
n∑

k=1

vk
x− xk

gives the unique polynomial interpolant throughout the data {xk, fk}nk=1. An equiv-
alent formulation of the barycentric weights is [48, Chap. 5]

vk = C /l′(xk) , l(x) =

n∏
k=1

(x− xk).

Thus if the xk are the roots of the Jacobi polynomial P (α,β)
n (x), the derivative values

P (α,β)
n (xk) needed to determine the corresponding barycentric weights can be com-

puted in exactly the same way as for the quadrature weights [29, 50]. As such, we
now have a fast, accurate, and stable method [30] of evaluating Jacobi interpolants,
even at millions of points.

Software. MATLAB code for the Gauss–Legendre and Gauss–Jacobi algorithms
described in this paper can be found in Chebfun’s legpts and jacpts functions, re-
spectively [46, revision 2337 and above]. We hope to soon have a software library
QUADPTS [28] which contains both MATLAB and C implementations, a Python
interface, and ultimately the other extensions described above.

6. Conclusion. We have presented an algorithm which, for any n ≥ 100, com-
putes the n-point Gauss–Legendre or Gauss–Jacobi nodes and weights in a total of
O(n) operations. The algorithm is easily vectorized, making it efficient in array-based
languages like MATLAB, and can be easily parallelized if required. Furthermore,
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we have demonstrated that the algorithm is extremely accurate, so that nodes and
weights computed to absolute and relative accuracies of almost machine precision,
respectively. MATLAB code is available as a standalone package [28], and is also
available through Chebfun’s legpts and jacpts commands [46].

We hope this new approach will remove the artificial limit on how researchers feel
they can use Gauss quadratures, and open up a fascinating window into numerical
algorithms built on asymptotic formulae.

Note added in proof. Shortly after submitting this paper for publication the
authors became aware of recent work by Bogaert, Michiels, and Fostier [7] which
also presents a method for computing the Gauss–Legendre nodes and weights based
upon asymptotic expansions. The approach proposed in [7] is similar to ours in two
respects: asymptotic expansions are used for the fast evaluation of a Legendre polyno-
mial and Newton’s method is used for computing the Gauss–Legendre nodes. Bogaert,
Michiels, and Fostier also suggest using both interior and exterior asymptotic formu-
lae, but while their interior formula is equivalent to the one used here in (3.9), they
derive an alternative expansion for the boundary near ±1. Their paper is motivated
by a fast evaluation scheme for Legendre series, and as such is not concerned with
extending the method to Gauss–Jacobi quadratures. Excellent accuracy in the nodes
is demonstrated for remarkably high degree quadratures, but little direct evidence of
the accuracy in the weights is given.

Acknowledgments. The authors would like to thank Andreas Glaser and Vladimir
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[31] C. G. J. Jacobi, Üeber Gauss neue Methode, die Werthe der Integrale näherungsweise zu
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