
AN ALGORITHM FOR THE CONVOLUTION OF LEGENDRE
SERIES

NICHOLAS HALE∗ AND ALEX TOWNSEND†

Abstract. An O(N2) algorithm for the convolution of compactly supported Legendre series
is described. The algorithm is derived from the convolution theorem for Legendre polynomials and
the recurrence relation satisfied by spherical Bessel functions. Combining with previous work yields
an O(N2) algorithm for the convolution of Chebyshev series. Numerical results are presented to
demonstrate the improved efficiency over the existing algorithm.

Key words. convolution, Legendre polynomial, spherical Bessel function, Fourier transform

AMS subject classifications. 33C10, 33C45, 44A35

1. Introduction. Convolution is a fundamental operation which arises in many
fields, particularly in signal processing [11,14] and statistics [8]. Given two continuous
integrable functions, f and g, their convolution is a third function, h, defined formally
by the integral

h(x) = (f ∗ g) (x) =
∫ ∞

−∞
f(t)g(x− t) dt, x ∈ R, (1.1)

which represents the area of overlap when g is reversed and shifted over f . This
operation is typically denoted by an asterisk ‘∗’ and is commutative and distributive.

In this article we focus on the particular case, which we shall motivate shortly,
where f and g are polynomials of finite degree with zero support outside of [a, b] and
[c, d], respectively. In this case, the convolution domain is the region in the (x, t)-plane
where both f and g are non-zero (see Figure 1.1), which gives rise to the following
equivalent definition:

h(x) = (f ∗ g) (x) =
∫ min(b,x−c)

max(a,x−d)

f(t)g(x− t) dt, x ∈ [a+ c, b+ d], (1.2)

and h(x) = 0 for x 6∈ [a+ c, b+ d].

.
t

x−→−→

a+ c b+ c a+ d b+ d

a

b

Fig. 1.1: The convolution domain when f and g have support on [a, b] and [c, d], respectively.
Throughout we assume, without loss of generality, that d− c ≥ b− a.

∗Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK, (hale@maths.ox.ac.uk,
http://people.maths.ox.ac.uk/hale/). Work was supported by The MathWorks, Inc., and King Ab-
dullah University of Science and Technology (KAUST), award KUK-C1-013-04.

†Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK,
(townsend@maths.ox.ac.uk, http://people.maths.ox.ac.uk/townsend/). Work was supported
by EPSRC grant EP/P505666/1 and by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 291068.

1

Existing algorithms for computing (1.1) are usually based on the assumption
that f and g are periodic functions, which allows use of the Fourier transform and
the convolution theorem [10, p. 6]

F{f ∗ g} = F{f} · F{g}, F{f}(ω) =
∫ ∞

−∞
f(x)eixω dx.

When f and g have the same period, f ∗g can be computed in O((M+N) log(M+N))
operations by approximating them by finite Fourier expansions of length M and N ,
respectively, and by employing the FFT [10, sec. 6.2.4]. However, this does not allow
f and g to have different periods or compact support.

A powerful computing paradigm for working with continuous functions f and g on
bounded intervals is to replace them by polynomial approximants (or “proxies”) fM
and gN of sufficiently high degree so that ‖f −fM‖∞ and ‖g−gN‖∞ are on the order
of machine precision [3,9,16]. Properties of f and g can then be efficiently calculated,
up to an error of machine precision, by numerically computing with the polynomials
fM and gN . Until now, one major exception was the computation of convolutions,
with the best known algorithm being an approach that evaluates (1.2) directly using
a quadrature rule (see section 2), which required O((M +N)3) operations.

In this article we describe a new algorithm that takes as its starting point Legendre
series representations of the polynomials fM and gN that makes use of the Fourier
transform of Legendre polynomials (see (3.1)) and the recurrence relation satisfied
by spherical Bessel functions (see (4.4)), to ultimately compute the corresponding
Legendre series coefficients of h. This new algorithm requires just O((M + N)2)
operations.

In the next section we introduce certain properties of h that follow from fM and
gN being polynomials and describe the O((M + N)3) quadrature-based algorithm.
In section 3 we describe the Fourier transform of a compactly supported Legendre
series1 and demonstrate that the convolution theorem holds for compactly supported
Legendre polynomials. Section 4 describes the new O((M +N)2) algorithm when fM
and gN have support only on [−1, 1], and section 5 extends this approach to more
general intervals. Numerical examples which demonstrate the computational speed of
our proposed algorithm are presented in section 6, before we finish with some further
implementation details and concluding remarks.

An implementation of the algorithm is publicly available in Chebfun [16], an
open-source software package written in object-oriented Matlab. All numerical ex-
periments in this paper use the conv command in Chebfun.

2. Quadrature-based algorithm. The quadrature-based algorithm relies on
the observation that h = fM ∗ gN is a piecewise polynomial of two or three pieces.

Lemma 2.1. If fM and gN are polynomials of degree M and N supported on [a, b]
and [c, d], respectively, with d− c ≥ b− a, then h = fM ∗ gN is a piecewise polynomial
on [a+ c, b+ d] such that

h(x) = (fM ∗ gN)(x) =

hleft(x) ∈ PM+N+1, x ∈ [a+ c, b+ c],

hmid(x) ∈ PN , x ∈ [b+ c, a+ d],

hright(x) ∈ PM+N+1, x ∈ [a+ d, b+ d].

1Throughout this paper, the phrase “Legendre polynomial” is used to describe the function which
coincides with the standard Legendre polynomial on [−1, 1], and is zero elsewhere. A “Legendre
series” is a finite linear combination of such polynomials. See section 3 for further discussion.

2

...
t

x
−→−→

a+ c b+ c a+ d b+ d
a

b

M +N + 2 N + 1

M +N + 2

M
+

N
+

1

Fig. 2.1: The quadrature nodes required by the quadrature-based algorithm for M = 3 and N =
5. The number of Gauss–Legendre quadrature nodes in t (vertical direction) is chosen to exactly
integrate (1.2), and the number of evaluation points in x (horizontal direction) is chosen to uniquely
determine h by polynomial interpolation (see Lemma 2.1).

Proof. It is enough to consider xM ∗ xN on each interval. Substituting this
into (1.2) and using the binomial theorem to expand (x − t)N reveals the required
result.

Therefore, the piecewise polynomial h is made of two pieces if b + c = a + d (or
equivalently d − c = b − a), and three pieces otherwise. On each piece it can be
evaluated exactly at any point by a polynomial-based quadrature rule of sufficiently
high degree. The uniqueness of polynomial interpolation ensures that hleft and hright

can be recovered from their values at M + N + 2 unique points in [a + c, b + c] and
[a+ d, b+ d], respectively, and hmid from N +1 points in [b+ c, a+ d]. In practice, for
stability and efficiency, these evaluation points are typically chosen to be Chebyshev
grids on each interval. The Legendre coefficients of h can be readily recovered from
such grids [2, 7].

For each fixed evaluation point x ∈ [a+ c, b+ d], a polynomial-based quadrature
rule of sufficient degree can then be used to compute the resulting definite integral
in (1.2) exactly. In particular, an d(M + N + 1)/2e-point Gauss–Legendre rule or
an (M + N + 1)-point Clenshaw–Curtis rule will suffice. Figure 2.1 shows these
quadrature nodes required for the case M = 3 and N = 5 when using a Gauss–
Legendre quadrature rule.

This approach is accurate and stable, but expensive. Since values of fM and gN
are required at O((M +N)2) points, and evaluating a polynomial of degree N at an
arbitrary point requires O(N) operations, the total complexity is O((M +N)3).

3. The Fourier transform and the convolution theorem for Legendre
polynomials. The Legendre polynomials, denoted by P0, P1, . . . , are orthogonal on
[−1, 1] with respect to the weight w(x) = 1. They can be defined recursively, and
satisfy a 3-term recurrence relation [13, (18.9.1)]

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ≥ 1, P1(x) = x, P0(x) = 1.

In the special case of Legendre polynomials defined as functions on [−1, 1] the Fourier
transform can be expressed in terms of a spherical Bessel function.

Theorem 3.1 (Fourier Transform of a Legendre polynomial). Let m > 0 be an
integer and Pm be the Legendre polynomial of degree m. Then

F{Pm} =

∫ 1

−1

Pm(x)e−iωx dx = 2(−i)njn(ω), ω ∈ R, (3.1)

where jn(z) is the spherical Bessel function with parameter n.

3

Proof. Combining [13, (18.17.19)] and [1, (10.1.1)], we have∫ 1

−1

Pm(x)e−iωx dx = in
√

2π

−ω
Jn+ 1

2
(−ω) = 2injn(−ω).

The result follows from jn(−ω) = (−1)njn(ω) [13, (10.47.14)].

Moveover, if f : [a, b] → C is a continuous function and f̂ denotes its Fourier
transform, we can define the inverse Fourier transform in the usual way,

F−1{f̂} =
1

2π

∫ ∞

−∞
f̂(ω)eiωxdω, x ∈ [a, b],

and observe that the Fourier inversion theorem holds, i.e., F−1{F{f}} = f .
The convolution theorem states that the Fourier transform of the convolution

of two functions is also the pointwise product of the Fourier transforms of the two
functions.

Theorem 3.2 (Convolution theorem). Let f, g : R → C be integrable continuous
functions. Then

F{f ∗ g} = F{f} · F{g}, F{f} =

∫ ∞

−∞
f(x)e−iωx dx, ω ∈ R.

Proof. This theorem appears in many textbooks. See, for example, [10, p. 6].
To extend this result to functions supported on [a, b] we can define them to be zero

off their support and hence, if f : [a, b] → C is continuous (and therefore integrable),
then

F{f} =

∫ b

a

f(x)e−iωx dx, ω ∈ R.

By combining Theorem 3.1, Theorem 3.2, and the Fourier inversion theorem the
convolution of two Legendre polynomials can be expressed as the inverse Fourier
transform of a product of spherical Bessel functions.

Corollary 3.3 (Convolution of Legendre polynomials). For integers m,n > 0,

(Pm ∗ Pn) (x) =
2(−i)m+n

π

∫ ∞

−∞
jm(ω)jn(ω)e

iωx dω, x ∈ [−2, 2]. (3.2)

Proof. Let h = Pm ∗Pn where Pm and Pn are defined as functions on [−1, 1]. By
Theorems 3.1 and 3.2 we have

F{h}(ω) =
∫ 2

−2

h(x)e−iωx dx = 4(−i)m+njm(ω)jn(ω), ω ∈ R,

and by the Fourier inversion theorem we conclude that, for x ∈ [−2, 2],

h(x) =
1

2π

∫ ∞

−∞
F{h}(ω)eiωx dω =

2(−i)m+n

π

∫ ∞

∞
jm(ω)jn(ω)e

iωx dω,

as required.
At first glance it is not obvious why Corollary 3.3 is useful for computing convo-

lutions involving Legendre polynomials since (3.2) is a devilish infinite integral with
an oscillatory and slowly decaying integrand. However, as we shall show shortly, (3.2)
can be used implicitly to derive a useful recurrence relation (see Theorem 4.1). In
particular, our algorithm does not explicitly work with spherical Bessel functions at
any point, even though our mathematical derivations in the next section exploit their
properties.

4

.
t

x
−→−→

−2 20
−1

1

Fig. 4.1: The convolution domain for two Legendre series on [−1, 1].

4. Convolution of Legendre series defined on intervals of the same
length. In this section we describe the convolution of two Legendre series on [−1, 1],
before generalizing to intervals [a, b] and [c, d] where d− c = b− a.

Let fM and gN be two Legendre series on [−1, 1] of degree M and N with coeffi-
cients α0, . . . , αM and β0, . . . , βN , respectively, such that

fM (x) =
M∑

m=0

αmPm(x), gN (x) =
N∑

n=0

βnPn(x). (4.1)

When [a, b] = [c, d] = [−1, 1] the convolution in (1.2) becomes

h(x) = (fM ∗ gN)(x) =

∫ min(1,x+1)

max(−1,x−1)

fM (t)gN (x− t) dt, x ∈ [−2, 2], (4.2)

and Figure 4.1 shows the convolution domain in this case.
Here the piecewise polynomial, h, is made of two pieces, hleft on [−2, 0] and hright

on [0, 2], each of degree N +M +1. We construct hleft and hright by computing their
Legendre coefficients. We focus on hleft since the computation for hright is similar.

Let γleft0 , . . . , γleftM+N+1 be the Legendre coefficients of hleft, so that

hleft(x) =

∫ x+1

−1

fM (t)gN (x− t) dt =

M+N+1∑
k=0

γleftk Pk(x+ 1), x ∈ [−2, 0].

By the orthogonality of Legendre polynomials and the orthonormalization constant
(k + 1/2)−1/2 for Pk(x) for k = 0, . . . ,M +N + 1, we have

γleftk =
2k + 1

2

∫ 0

−2

Pk(x+ 1)

∫ x+1

−1

fM (t)gN (x− t) dt dx

=
N∑

n=0

βn

[
2k + 1

2

M∑
m=0

αm

∫ 0

−2

Pk(x+ 1)

∫ x+1

−1

Pm(t)Pn(x− t) dt dx

]
︸ ︷︷ ︸

=Bleft
k,n

.
(4.3)

The relations in (4.3) can therefore be written in matrix form as γleft = Bleftβ.

We now seek an efficient way to form the matrix Bleft. Computing the integrals
in (4.3) via quadrature would be as expensive, if not more so, than the algorithm
described in section 2. Instead, we exploit the fact that the entries of the Bleft satisfy
a recurrence relation, which is a consequence of the 3-term recurrence satisfied by
spherical Bessel functions [13, (10.51.1)]:

jn+1(z) =
2n+ 1

z
jn(z)− jn−1(z), n ≥ 0, j0(z) =

sin z

z
, j−1(z) =

cos z

z
. (4.4)

5

Theorem 4.1. Let M be an integer, α0, . . . , αM ∈ C, and the matrix Bleft be
defined entry-wise as

Bleft
k,n =

2k + 1

2

M∑
m=0

αm

∫ 0

−2

Pk(x+ 1)

∫ x+1

−1

Pm(t)Pn(x− t) dt dx, (4.5)

where 0 ≤ k ≤ M +N + 1 and 0 ≤ n ≤ N . The entries of Bleft satisfy the following
recurrence relation:

Bleft
k,n+1 = −2n+ 1

2k + 3
Bleft

k+1,n +
2n+ 1

2k − 1
Bleft

k−1,n +Bleft
k,n−1, n, k ≥ 1. (4.6)

Proof. We first use the definition (4.2) for x ∈ [−2, 0] and apply the change
variables s = x+ 1 to obtain

Bleft
k,n =

2k + 1

2

M∑
m=0

αm

∫ 1

−1

Pk(s) (Pm ∗ Pn) (s− 1) ds.

By Corollary 3.3 we have,

Bleft
k,n =

2k + 1

π

M∑
m=0

(−i)m+nαm

∫ 1

−1

Pk(s)

∫ ∞

−∞
jm(ω)jn(ω)e

iω(s−1) dω ds.

Next, we swap the order of integration and use Theorem 3.1 to write the entries of
Bleft as integrals involving the triple-product of spherical Bessel functions

Bleft
k,n =

2(2k + 1)

π

M∑
m=0

(−i)m+nikαm

∫ ∞

−∞
jk(ω)jm(ω)jn(ω)e

−iω dω. (4.7)

Finally, using the 3-term recurrence (4.4) we have, for k, n ≥ 1,

Bleft
k,n+1 =

2(2k + 1)

π

M∑
m=0

(−i)m+n+1ikαm

∫ ∞

−∞
jk(ω)jm(ω)jn+1(ω)e

−iω dω

=
2(2k + 1)(2n+ 1)

π

M∑
m=0

(−i)m+n+1ikαm

∫ ∞

−∞

jk(ω)

ω
jm(ω)jn(ω)e

−iω dω +Bleft
k,n−1

= −2n+ 1

2k + 3
Bleft

k+1,n +
2n+ 1

2k − 1
Bleft

k−1,n +Bleft
k,n−1,

as required.
In practice we observe that the recurrence relation (4.6) is numerically stable for

computing entries of Bleft below the diagonal, but unstable above it. This is perhaps
to be expected, as when k < n the factors (2n + 1)/(2k + 3) and (2n + 1)/(2k − 1)
in (4.6) are larger than 1, and rounding errors accumulate in subtracting consecutive
terms. Below the diagonal, where k > n, the terms are decreasing in magnitude and
the recurrence is stable. The instability above the diagonal is easily overcome by
observing that the matrix Bleft is symmetric up to a scaling factor. In particular,
from (4.7) it can be readily seen that

Bleft
k,n = (−1)n+k 2k + 1

2n+ 1
Bleft

n,k , n, k ≥ 0, (4.8)

6

which can be used to compute the otherwise unstable entries.
To initialize the recurrence in (4.6) we require the first two columns of Bleft.

Substituting P0(x − t) = 1 into (4.5) we find that the first column simply contains
the coefficients of the indefinite integral of fM [5, eq. 22],

Bleft
k,0 =

2k + 1

2

∫ 1

−1

Pk(x)

∫ x

−1

fM (t) dt dx =

{
αk−1

2k−1 − αk+1

2k+3 , k 6= 0,

α0 − α1/3, k = 0.

Similarly, the second column can be computed by observing that

Bleft
k,1 =

2k + 1

2

∫ 1

−1

Pk(x)

∫ x

−1

fM (t)(x− t− 1) dt dx

=
2k + 1

2

∫ 1

−1

Pk(x)

∫ x

−1

fM (t)

∫ x

t

ds dt dx−Bleft
k,0

=
2k + 1

2

∫ 1

−1

Pk(x)

∫ x

−1

∫ s

−1

fM (t) dt ds dx−Bleft
k,0 ,

where the last equality comes from interchanging the order of integration. Therefore,
Bleft

k,1 is the difference between the Legendre coefficients resulting from two consecutive

indefinite integrals of fM and Bleft
:,0 , and so, for 0 ≤ k ≤M +N ,

Bleft
k,1 =

{
Bleft

k−1,0/(2k − 1)−Bleft
k,0 −Bleft

k+1,0/(2k + 3), k 6= 0,

−Bleft
1,0 /3, k = 0.

We suspect it may be possible to continue in this way and derive the recurrence
relation (4.6) for the remaining columns of Bleft without all the machinery of section
3, however we were unable to do so. Furthermore, it is not clear that such a derivation
would reveal the symmetry relation (4.8), which is necessary to compute the terms
above the diagonal in a numerically stable way.

We have shown that both Bleft
:,0 and Bleft

:,1 can be computed in O(M +N) opera-

tions, and the whole (M +N)×N matrix, Bleft, in O((M +N)N) operations. The
matrix-vector product Bleftβ can be computed with the same cost, and therefore the

coefficients γleft of hleft in O((M +N)N) operations. The coefficients γright of hright

can be computed from Brightβ, for which an almost identical recurrence relation can
be derived.

One immediate extension is to the convolution of two Legendre series defined on
intervals [a, b] and [c, d] of the same length, i.e., d− c = b−a. A Legendre polynomial
on [a, b] is defined as the composition Pk ◦ψ[a,b], where ψ[a,b](x) = 2(x−a)/(b−a)−1
is the linear map from [a, b] to [−1, 1]. Moreover, Legendre series of fM and gN on
[a, b] and [c, d], respectively, are defined as

fM (x) =
M∑

m=0

αm(Pm ◦ ψ[a,b])(x), gN (x) =
N∑

n=0

βn(Pn ◦ ψ[c,d])(x). (4.9)

The following lemma relates fM ∗ gN to a convolution of series defined on [−1, 1].
Lemma 4.2. Let f and g be continuous functions defined on [a, b] and [c, d],

respectively, with d− c = b− a. Then

(f ∗ g) (x) :=
∫ min(b,x−d)

max(a,x−c)

f(t)g(x− t) dt =
b− a

2

(
(f ◦ ψ−1

[a,b]) ∗ (g ◦ ψ
−1
[c,d])

)
(y),

7

where x ∈ [a+ c, b+ d] and y = 2ψ[a+c,b+d](x) ∈ [−2, 2].
Proof. By the changes of variables s = ψ[a,b](t) and y = 2ψ[a+c,b+d](x) we have

(f ∗ g) (x) = b− a

2

∫ min(1,y−1)

max(−1,y+1)

f
(
ψ−1
[a,b](s)

)
g
(
ψ−1
[a+c,b+d](y/2)− ψ−1

[a,b](s)
)
ds

=
b− a

2

(
(f ◦ ψ−1

[a,b]) ∗ (g ◦ ψ
−1
[c,d])

)
(y),

where the last equality uses ψ−1
[c,d](y − s) = ψ−1

[a+c,b+d](y/2)− ψ−1
[a,b](s).

5. Convolution of Legendre series supported on general intervals. In
this section we relax the requirement that fM and gM are defined on intervals of the
same length. We consider three cases in turn;
i 1 < (d− c)/(b− a) is an integer (Figure 5.1),
ii 1 < (d− c)/(b− a) < 2 (Figure 5.2),
iii (d− c)/(b− a) > 2 (Figure 5.3).

(i) (d− c)/(b− a) > 1 is an integer. If r = (d − c)/(b − a) > 1 is an integer,
gN can be partitioned into a sum of r functions,

gN (x) =
r∑

j=1

g
[j]
N (x), g

[j]
N (x) = gNχ[c+(j−1)(b−a),c+j(b−a)],

where χ[a,b] is the indicator function on the interval [a, b] and each g
[j]
N , 1 ≤ j ≤ r, is

defined on an interval of length b− a. Therefore, by distributivity of ‘∗’, fM ∗ gN can
be computed with r convolutions,

h = (fM ∗ gN) =
r∑

j=1

(fM ∗ g[j]N), (5.1)

where each convolution in the sum involves functions defined on intervals of the same
length, which can be computed by the algorithm described in section 4.

For (5.1) we must restrict gN to r intervals of length b − a and compute the

Legendre coefficients of g
[1]
N , . . . , g

[r]
N . Noting that the g

[j]
N are polynomials of degree at

most N , for each j we evaluate gN at N+1 Chebyshev points on [c+(j−1)(b−a), c+
j(b − a)] using Clenshaw’s algorithm for Legendre series [4], and then compute the

Chebyshev coefficients of g
[j]
N using a discrete Chebyshev transform [6]. From these,

the Legendre coefficients of g
[j]
N can be computed using a fast Chebyshev–Legendre

transform [2,7].
Previously, we saw that the function h on [a+ c, b+ d] is a piecewise polynomial

made up of three pieces hleft, hmid, and hright. The Legendre coefficients for hleft

and hright are simply the left polynomial part of the first and the right polynomial
part of the last term in (5.1). By Lemma 2.1 we know that hmid is a polynomial of
degree at most N , and thus is uniquely determined by it’s values at N +1 Chebyshev
points on [b+ c, a+d]. The evaluation of hmid for a given point requires summing the
contribution from the terms in the righthand side of (5.1), only two of which will be
non-zero. Since each of these terms are convolutions on intervals of the same length,
they can be computed as described in section 4, and the evaluations can be performed
using Clenshaw’s algorithm for Legendre series, as described above.

Figure 5.1 shows the convolution domain for the case when (d − c)/(b − a) = 3.
The crosses indicate the evaluation points in x ∈ [b + c, a + d] used to construct the
Legendre series for hmid when N = 7.

8

.........

Fig. 5.1: The convolution domain when d− c is an integer multiple of b− a. Here, d− c = 3(b− a).
The diagram shows that the region can be subdivided into (d − c)/(b − a) subdomains, each one
involving a convolution of two Legendre series defined on intervals of the same length. The crosses
indicate the evaluation points used to compute the Legendre coefficients for hmid when N = 7.

.....

Fig. 5.2: The convolution domain when 1 < (d− c)/(b− a) < 2 is divided into three subdomains, for
each of which the convolution can be computed using the algorithm in section 4. The polynomial
hleft is computed by the left-most triangle (blue), hright by the right-most triangle (red), and hmid

by evaluating at N + 1 Chebyshev points, summing up the contribution from the top-most triangle
(green) and trapezium (red). The crosses are the evaluation points used for hmid when N = 3.

(ii) 1 < (d− c)/(b− a) < 2. Suppose that 1 < (d− c)/(b− a) < 2, so that the
interval [c, d] cannot be partitioned into intervals of length b − a. In this case, both
fM and gN must be restricted and it can be shown that

h =

(
fM ∗ gNχ[c,c+b−a]

)
, on [a+ c, b+ c],(

fMχ[2b+c−d−a,b] ∗ gNχ[a+c,d−b+2a]

)
+
(
fM ∗ gNχ[d−b+a,d]

)
, on [b+ c, a+ d],(

fM ∗ gNχ[d−b+a,d]

)
, on [a+ d, b+ d].

Therefore, for each x ∈ [a+ c, b+ d], h(x) can be expressed by convolutions involving
functions defined on intervals of the same length. The Legendre series fM and gN are
restricted to a desired subinterval by evaluating atM+1 and N+1 Chebyshev points,
respectively, and converting the values to the corresponding Legendre coefficients, as
described above. The polynomial hmid is then constructed by evaluating at N + 1
Chebyshev points in [b+ c, a+ d].

Figure 5.2 shows the convolution domain for 1 < (d− c)/(b−a) < 2. The domain
is divided into 3 subdomains, each of which can be treated by the algorithm described
in section 4. The crosses indicate the evaluation points in x ∈ [b + c, a + d] used to
compute the Legendre coefficients for hmid when N = 3.

(iii) (d− c)/(b− a) > 2. For the final case, suppose that (d− c)/(b− a) > 2, so
that the interval [c, d] can be divided into intervals of length b− a plus a remainder.
Let r = b(d− c)/(b− a)c and write, using the distributivity of ‘∗’,

(fM ∗ gN) =
(
fM ∗ gNχ[c,c+(r−1)(b−a)]

)
+

(
fM ∗ gNχ[c+(r−1)(b−a),d]

)
. (5.2)

The first term in (5.2) satisfies case (i) and the second satisfies case (ii), and so
this final case can be reduced to the previous two. As before, hmid is evaluated at
N + 1 Chebyshev points in [b + c, a + d] and these values are converted to Legendre
coefficients using fast transforms. Figure 5.3 shows the convolution domain when

9

.............

Fig. 5.3: The convolution domain for general intervals with d−c > b−a. Here, 4 < (d−a)/(b−a) < 5.
The region is subdivided into b(d−c)/(b−a)c+2 subdomains that can be treated with the algorithm
in section 4. This convolution domain can be formed by concatenating Figure 5.1 and Figure 5.2,
and can be computed by combining those two cases. The crosses show the evaluation points used to
construct hmid when N = 11.

(d− a)/(b− a) > 2. In total the domain is subdivided into r+2 pieces, r− 1 of them
being required for the first term in (5.2), and 3 of them for the second term.

Therefore, to compute fN ∗gM we require r+2 calls to the algorithm described in
section 4, each one requiring O((M +N)N) operations, and this leads to a computa-
tional cost that grows linearly with the ratio (d− c)/(b−a). When working to a finite
precision the total cost can be reduced, sometimes quite significantly, by compressing
polynomial representations at several stages (see section 7).

The partitionings described here are continuous analogues of the overlap-add
method used to evaluate discrete convolutions of vectors of length M and N , where
N �M [14, pp. 369–371]. In that discrete setting, the longest vector is divided into
vectors of length M (analogous to our restrictions of gN) and the resulting discrete
convolutions summed up carefully to contribute to the final result. If M exactly di-
vides into N (analogous to case (i)) the vector is exactly partitioned, otherwise there
is a small convolution for the remaining < M entries (analogous to case (ii)), which is
computed by zero padding that vector to length M . The difference in our continuous
setting is that we do not have the luxury of zero padding, and instead must restrict
fM .

6. Numerical results. Our algorithm is publicly available in the Chebfun com-
mand called conv, and the results below use that implementation [16]. The numerical
experiments were performed on a single core of a 2011 1.8GHz Intel Core i7 MacBook
Air with Matlab 2014a. Execution times are approximate.

We first take two randomly generated Legendre series2 of degree N , for 65 values
of N that are logarithmically spaced3 between 10 and 105 and compare the compu-
tational time for computing (4.2) using the quadrature approach (see section 2) and
our algorithm. Figure 6.1 shows the computational times for the quadrature approach
and our algorithm. The computational cost grows quadratically for our algorithm and
cubically for the quadrature approach, matching their respective algorithmic complex-
ities. For all the numerical experiments the norm of the difference between the two
computed solutions was zero to 15 or 16 digits.

In section 5, we showed that the complexity of our algorithm depends on the
ratio of the length of the intervals, whereas the quadrature based approach does not.
In the regime of (d − c) � (b − a) one would expect the quadrature approach to be
more efficient, and to investigate this we compared the computational time required
by the two algorithms for computing (1.2) for Legendre series of degree N on intervals

2Random vectors of Legendre coefficients are generated for (4.1) with the Matlab command
randn using the random number generator mt19937ar with the seed initialized to 1.

3The values of N we used are computed by the Matlab code ceil(logspace(1,5,65)).

10

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

N

C
om

pu
ta

tio
n

tim
e

Quadrature
New

O(N2)

O(N3)

Fig. 6.1: Computational time for convolution of Legendre series on [−1, 1] of degree N for the
quadrature approach (blue) and our algorithm (red).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ratio of domain lengths

C
om

pu
ta

tio
na

l t
im

e

N = M = 100

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Ratio of domain lengths

C
om

pu
ta

tio
na

l t
im

e

N = M = 200

Fig. 6.2: Computation time for the convolution of Legendre series on [−1, 1] and [−r− 1/2, r+ 1/2]
for r = 1, . . . , N with N = M = 100 (left) and N = M = 200 (right). The execution time for the
quadrature approach (blue) does not depend on the length of the intervals, whereas our algorithm
(red) depends linearly on the ratio.

[a, b] = [−1, 1] and [c, d] = [−n− 1/2, n+ 1/2] for n = 1, . . . , N . Figure 6.2 shows the
computational time for the two algorithms when N = 100 and N = 200. For N = 100
the quadrature approach is more efficient when (d− c)/(b− a) > 50 and for N = 200
when (d − c)/(b − a) > 170. By considering the complexities of the algorithms the
ratio for which the two approaches are of similar efficiency should grow linearly with
N .

7. Further details. A few extra details were required for the conv command
in Chebfun [16], which we now describe.

Compression of polynomial representation. The algorithm we have de-
scribed thus so far works in infinite precision arithmetic, and can be made faster in
finite precision by adaptively pruning polynomial expansions to remove numerically
insignificant trailing coefficients. We do this at several places in the implementation
and almost all intermediary polynomials are compressed. This compression is most

11

beneficial when the original Legendre coefficients decay at least algebraically, such as
when they are derived from a finite Legendre expansion of differentiable or analytic
functions. In particular, we consider the computational timings reported in section 6
as worst case as the original Legendre coefficients are not derived from expansions of
smooth functions.

Chebyshev series. The Chebfun software system represents a function defined
on [−1, 1] by a Chebyshev series

pN (x) =
N∑

n=0

αcheb
n Tn(x), x ∈ [−1, 1],

where Tn(x) = cos(n cos−1 x) is the Chebyshev polynomial of degree n [12]. This is
extended to general bounded intervals [a, b] by using the linear map ψ[a,b] in the same
way as (4.9). Thus, the implementation in the conv command needs to compute the
convolution of two Chebyshev series and return a piecewise polynomial represented
by Chebyshev series. Therefore, the first and last part of our implementation trans-
form between Chebyshev and Legendre series, which are rapidly computed with the
cheb2leg and leg2cheb commands in Chebfun [7].

Currently, we are not aware of an algorithm for computing fM ∗ gN that works
directly with Chebyshev series and has the same efficiency as we have shown in this ar-
ticle. Many of the relationships we exploited in section 3 become far more complicated
with Chebyshev polynomials and involve the weight function w(x) = (1− x2)−1/2.

Piecewise smooth functions. Chebfun can also approximate piecewise smooth
functions, by bundling together Chebyshev series defined on adjacent intervals. We
can easily extend our algorithm to the convolution of piecewise smooth functions:
Suppose x1 ≤ · · · ≤ xK+1 such that fM and gN are polynomials of degree at most M
and N on the subintervals [xk, xk+1], 1 ≤ k ≤ K, i.e.,

fM =

K∑
k=1

fMχ[xk,xk+1], gN =

K∑
j=1

gNχ[xj ,xj+1],

where χ[xk,xk+1] is the indicator function for [xk, xk+1]. By the distributivity of ‘∗’,
we have

(fM ∗ gN) =
K∑

k=1

K∑
j=1

(
fMχ[xk,xk+1] ∗ gNχ[xj ,xj+1]

)
,

where each term in the double sum is a convolution of two polynomials.

8. Appendix. The convolution algorithm we have described is applicable to
Legendre series on general bounded intervals [a, b] and [c, d], with the canonical al-
gorithm working when [a, b] = [c, d] = [−1, 1]. Below we give the Matlab code for
computing the convolution of two Legendre series on [−1, 1]. The inputs are Legendre
coefficients for fM and gN and the outputs are the coefficients for hleft and hright. A
full implementation that is applicable to functions on general intervals and piecewise
smooth functions is publicly available in the conv command in Chebfun [16].

function [gL, gR] = shortConv(a, b)

% Input: Legendre coeffs of f_M and g_N.

12

% Output: Legendre coeffs of h^left and h^right.

MN = length(a) + length(b); % Maximum degree of result

if (length(b) > length(a)), tmp = a; a = b; b = tmp; end

a = [a ; zeros(MN - length(a), 1)]; % Pad to make length N

% S represents multiplication by 1/z in spherical Bessel space:

e = [[1 ; 1./(2*(1:(MN-1)).’+1)], ...

[1 ; zeros(MN-1, 1)], -1./(2*(0:MN-1).’+1)];

S = spdiags(e, -1:1, MN, MN);

gL = rec(S, a, b, -1); % Legendre coeffs of h^left

S(1,1) = -1; % Modify S for right piece

gR = -rec(S, a, b, 1); % Legendre coeffs of h^right

end

function g = rec(S, a, b, sgn) % Form B via rec st g=B(a)*b

idx = 1:length(b); % Useful index

scl = (-1).^(idx.’+1)./(2*idx.’-1); % Scaling for upper-tri part

%% First column of B:

vNew = S*a; v = vNew;

g = b(1)*vNew;

bScl = b.*scl; bScl(1) = 0;

g(1) = g(1) + vNew(idx).’*bScl;

if (length(b) == 1), return, end % Scalar case is trivial!

%% Second column of B:

vNew = S*v + sgn*v; vOld = v; v = vNew; vNew(1) = 0;

g = g + b(2)*vNew;

bScl = -bScl*((2 - .5)/(2 - 1.5)); bScl(2) = 0;

g(2) = g(2) + vNew(idx).’*bScl;

%% Loop over remaining columns using recurrence:

for k = 3:length(b)

vNew = (2*k-3) * (S * v) + vOld; % Recurrence

vNew(1:k-1) = 0; % Zero terms

g = g + vNew*b(k); % Append to g

% Recurrence unstable for j<k. Correct for upper-tri part:

bScl = -bScl*((k-.5)/(k-1.5)); bScl(k) = 0;

g(k) = g(k) + vNew(idx).’*bScl;

vOld = v; v = vNew; % Seed new recurrence

end

end

Acknowledgments. We are grateful to Rodrigo Platte for drawing our attention
to the connection between the Fourier transform of Legendre polynomials and Bessel
functions. We also thank Nick Trefethen for providing us with an interesting test
problem [15, Chap. 6], which our new algorithm has sped up by a factor of more than
50. We have also benefited from discussions with members of the Chebfun team.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Formulas, Graphs, and Math-
ematical Tables, Dover, New York, 1965.

[2] B. K. Alpert and V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions,
SIAM J. Sci. Stat. Comp., 12 (1991), pp. 158–179.

13

[3] J. P. Boyd, Finding the zeros of a univariate equation: proxy rootfinders, Chebyshev interpo-
lation, and the companion matrix, SIAM Review, 55 (2013), pp. 375–396.

[4] C. W. Clenshaw, A note on the summation of Chebyshev series, Math. Comp., 51 (1955),
pp. 118–120.

[5] A. R. DiDonato, Recurrence relations for the indefinite integrals of associated Legendre func-
tions, Math. Comp., 38 (1982), pp. 547–551.

[6] W. M. Gentleman, Implementing Clenshaw–Curtis quadrature II: Computing the cosine trans-
formation, Commun. ACM, 15 (1972), pp. 343–346.

[7] N. Hale and A. Townsend, A fast, simple, and stable Chebyshev–Legendre transform using an
asymptotic formula, to appear in SIAM J. Sci. Comp.

[8] R. V. Hogg, J. W. McKean, and A. T. Craig, Introduction to Mathematical Statistics, 6th
edition, Prentice Hall, New Jersey, 2004.

[9] S. Jaroszewicz and M. Korzen, Arithmetic operations on independent random variables: a
numerical approach, SIAM J. Sci. Comp., 34 (2012), A1241–A1265.

[10] Y. Katznelson, An Introduction to Harmonic Analysis, Dover, 1976.
[11] V. Madisetti and D. Williams, Digital Signal Processing Handbook on CD-ROM, CRC Press,

1999.
[12] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, CRC Press, 2002.
[13] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of

Mathematical Functions, Cambridge University Press, 2010.
[14] S. Salivahanan and A. Vallavaraj, Digital Signal Processing, Tata McGraw-Hill Education,

2000.
[15] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013.
[16] L. N. Trefethen et al., Chebfun Version 5, The Chebfun Development Team, (2014), http:

//www.chebfun.org/.

14

