
Nick Trefethen, 27 June 2014

Two-page summary of the main features of Chebfun

Chebfun is a MATLAB-based software system for machine precision numerical computing
with functions. It started from the observation that polynomial interpolants in Chebyshev
points are powerful and flexible tools for representing functions, computing their roots and
extrema and integrals, and other operations. The Chebfun idea is to represent a function
f(x) by a polynomial or piecewise polynomial to about 16 digits of precision. When op-
erations are carried out like g = exp(f) or h = gf , the polynomial degrees are trimmed
automatically, always aiming to maintain this accuracy. This is achieved by monitoring
Chebyshev series coefficients and detecting plateaus caused by rounding errors at approx-
imately the level of machine precision. This is an analogue for functions of the rounding
idea in floating point arithmetic for numbers.

For example, to construct a representation of f(x) = sin(x2)J0(x) + sin(x)J1((20− x)2) on
the interval [0, 10], one may type

f = chebfun(’sin(x.^2).*besselj(0,x)+sin(x).*besselj(1,(20-x).^2)’,[0 10]);

The resulting object, called a chebfun (with a lower-case c), “feels like” f on the chosen
interval and can be manipulated with familiar MATLAB commands. For example, plot(f)
gives this picture:

0 2 4 6 8 10
−0.5

0

0.5

1

Here are the roots of f in the subinterval [4, 5], computed via eigenvalues of colleague
matrices.

roots(f{4,5})

ans =

4.355408374348725

4.703277404115000

Here are its maximum and definite integral, computed by Clenshaw-Curtis quadrature:

max(f)

ans = 0.709809172023478

sum(f)

ans = 0.551807278413019

The representation of f is by a polynomial of moderate degree,

length(f)

ans = 221

Operations that introduce discontinuities, like g = exp(abs(f)), lead to piecewise repre-
sentations to which all the same operations can be applied in the same way:

1



mean(g)

ans = 1.206846790985504

In Maple or Mathematica, computations like these are possible in principle, but they require
far more expertise on the part of the user to blend symbolic and numerical operations
effectively. Chebfun is completely numerical and avoids the combinatorial explosion of
computer time and memory that tends to afflict symbolic systems.

Initially Chebfun was a function calculator, but it has grown. Early on it developed con-
tinuous analogues of linear algebra operations such as QR factorization and SVD. More
important for users have been its capabilities with ODE boundary-value and eigenvalue
problems. In MATLAB, one types x=A\b to invoke an algorithm to solve a linear system of
equations. Similarly, in Chebfun one types u=L\f to solve a boundary-value problem defined
by a linear or nonlinear operator L with boundary conditions and a forcing function f . The
algorithm used is rectangular adaptive spectral Chebyshev discretization as developed by
Toby Driscoll and Nick Hale, with convergence determined in the usual Chebfun fashion by
detection of plateaus in Chebyshev series expansions. For example, here is a solution of the
nonlinear problem 0.01u′′ + uu′

− u = 0 on [0, 1] with Dirichlet boundary conditions:

N = chebop(@(u) 0.01*diff(u,2)+u.*diff(u)-u, [0,1]);

N.lbc = -2; N.rbc = 1.5;

u = N\0; plot(u)

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

The nonlinear aspect of the problem is handled by Newton iteration using a continuous
analogue of automatic differentiation, and the result is accurate to 11 digits. Here we
compute the maximum derivative of the solution in the interior layer:

max(diff(u))

ans = 80.484282397754797

We are unaware of any other tool for ODE boundary-value problems that is so powerful,
accurate, and convenient. Similar commands solve eigenvalue problems and integral equa-
tions, and are readily explored with the graphical user interface CHEBGUI. Analogous
capabilities in 2D are under development.

Chebfun is implemented in object-oriented MATLAB with about 40 classes. Users mainly
interact with the chebfun, chebfun2, chebop, and chebgui classes for 1D functions, 2D func-
tions, differential operators, and graphical user interface, respectively. The other classes
support functionality including representation of functions in 1D with or without singular-
ities, on bounded or unbounded intervals, periodic or nonperiodic; delta functions; repre-
sentation of functions in 2D; automatic spectral discretization of differential and integral
operators; problems with block structure; runtime preferences; and automatic differentia-
tion to enable Newton iteration in solution of nonlinear differential and integral equations.
The class diagram can be found at github.com/chebfun/chebfun/wiki/Class-diagram.
Chebfun also has extensive collections of test programs (about 200 at present) and example
programs (about 150).

2


