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Abstract. An object-oriented MATLAB system is described for performing numerical linear
algebra on continuous functions and operators rather than the usual discrete vectors and matrices.
About eighty MATLAB functions from plot and sum to svd and cond have been overloaded so that
one can work with our “chebfun” objects using almost exactly the usual MATLAB syntax. All
functions live on [−1, 1] and are represented by values at sufficiently many Chebyshev points for
the polynomial interpolant to be accurate to close to machine precision. Each of our overloaded
operations raises questions about the proper generalization of familiar notions to the continuous
context and about appropriate methods of interpolation, differentiation, integration, zerofinding, or
transforms. Applications in approximation theory and numerical analysis are explored, and possible
extensions for more substantial problems of scientific computing are mentioned.
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1. Introduction. Numerical linear algebra and functional analysis are two faces
of the same subject, the study of linear mappings from one vector space to another.
But it could not be said that mathematicians have settled on a language and notation
that blend the discrete and continuous worlds gracefully. Numerical analysts favor
a concrete, basis-dependent matrix-vector notation that may be quite foreign to the
functional analysts. Sometimes the difference may seem very minor between, say, ex-
pressing an inner product as (u, v) or as uTv. At other times it seems more substantial,
as, for example, in the case of Gram–Schmidt orthogonalization, which a numerical
analyst would interpret as an algorithm, and not necessarily the best one, for com-
puting a matrix factorization A = QR. Though experts see the links, the discrete and
continuous worlds have remained superficially quite separate; and, of course, some-
times there are good mathematical reasons for this, such as the distinction between
spectrum and eigenvalues that arises for operators but not matrices.

The purpose of this article is to explore some bridges that may be built be-
tween discrete and continuous linear algebra. In particular we describe the “cheb-
fun” software system in object-oriented MATLAB, which extends many MATLAB
operations on vectors and matrices to functions and operators. This system con-
sists of about eighty M-files taking up about 100KB of storage. It can be down-
loaded from http://www.comlab.ox.ac.uk/oucl/work/nick.trefethen/, and we assure
the reader that going through this paper with a computer at hand is much more fun.

Core MATLAB contains hundreds of functions. We have found that this collection
has an extraordinary power to focus the imagination. We simply asked ourselves, for
one MATLAB operation after another, what is the “right” analogue of this operation
in the continuous case? The question comes in two parts, conceptual and algorithmic.
What should each operation mean? And how should one compute it?
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On the conceptual side, we have made a basic restriction for simplicity. We
decided that our universe will consist of functions defined on the interval [−1, 1]. Thus
a vector v in MATLAB becomes a function v(x) on [−1, 1], and it is immediately clear
what meaning certain MATLAB operations must now take on, such as

norm(v) =

(∫ 1

−1

v2dx

)1/2

.(1.1)

(Throughout this article we assume that the reader knows MATLAB, and we take all
quantities to be real except where otherwise specified, although our software system
realizes at least partially the generalization to the complex case.) Of course, if our
system is to evolve into one for practical scientific computing, it will eventually have
to be generalized beyond [−1, 1].

And how might one implement such operations? Here again we have made a very
specific choice. Every function is represented by the polynomial interpolant through its
values in sufficiently many Chebyshev points for accuracy close to machine precision.
By Chebyshev points we mean the numbers

xj = cos
πj

N
, 0 ≤ j ≤ N,(1.2)

for some N ≥ 0. (For N = 0 we take x0 = 1.) We evaluate the polynomial interpolant
of data in these points by the fast, stable barycentric formula first published by
Salzer [1, 11, 23]. Implementing numerical operations involving such interpolants
raises fundamental questions of numerical analysis. The right way to evaluate (1.1), for
example, is by Clenshaw–Curtis quadrature implemented with a fast Fourier transform
(FFT) [4], and indeed many of our methods utilize the FFT to move back and forth
between Chebyshev grid functions on [−1, 1] and sets of coefficients of expansions in
Chebyshev polynomials. But these matters are all in principle invisible to the user,
who sees only that familiar operations like + and norm and sin have been overloaded
to operations that give the right answers, usually to nearly machine precision, for
functions instead of vectors.

From functions, the next step is matrices whose columns are functions. For
these “column maps” [6] or “matrices with continuous columns” [28] or “quasi matri-
ces” [25], we define and implement operations such as matrix-vector product, QR fac-
torization, singular value decomposition (SVD), and least-squares solution of overde-
termined systems of equations (section 9). Thus our overloaded “qr” function, for
example, can be used to generate orthogonal polynomials. At the end we mention
preliminary steps to treat the case of “matrices” that are continuous in both direc-
tions, which can be regarded as bivariate functions on [−1, 1] × [−1, 1] or as integral
operators.

2. Chebfuns and barycentric interpolation. Our fundamental objects are
MATLAB structures called chebfuns, which are manipulated by overloaded variants
of the usual MATLAB functions for vectors. “Under the hood,” the data defining a
chebfun consist of a set of numbers f0, . . . , fN for some N ≥ 0, and each operation
is defined via polynomial interpolation of the values {fj} at the Chebyshev points
{xj} defined by (1.2). The interpolation is carried out numerically by the fast, stable
barycentric formula developed by Salzer [23] for these interpolation points:

p(x) =

N∑
j=0

wj

x− xj
fj

/
N∑
j=0

wj

x− xj
(2.1)
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with

wj =

{
(−1)j/2, j = 0 or j = N ,

(−1)j otherwise.
(2.2)

For an introduction to barycentric interpolation, see [1], and for a proof of its nu-
merical stability, see [11]. Polynomial interpolation has a spotty reputation, but this
is a result of difficulties if one uses inappropriate sets of points (e.g., equispaced) or
unstable interpolation formulas (e.g., Newton with improper ordering). For Cheby-
shev points and the barycentric formula, polynomial interpolants have almost ideal
properties, at least for approximating functions that are smooth. We summarize some
of the key facts in the following theorem.

Theorem 2.1. Let f be a continuous function on [−1, 1], pN its degree N poly-
nomial interpolant in the Chebyshev points (1.2), and p∗N its best approximation on
[−1, 1] in the norm ‖ · ‖ = ‖ · ‖∞. Then

(i) ‖f − pN‖ ≤ (2 + 2
π logN)‖f − p∗N‖;

(ii) if f has a kth derivative in [−1, 1] of bounded variation for some k ≥ 1,
‖f − pN‖ = O(N−k) as N → ∞;

(iii) if f is analytic in a neighborhood of [−1, 1], ‖f − pN‖ = O(CN ) as N → ∞
for some C < 1; in particular we may take C = 1/(M + m) if f is analytic
in the closed ellipse with foci ±1 and semimajor and semiminor axis lengths
M ≥ 1 and m ≥ 0.

Proof. It is a standard result of approximation theory that a bound of the
form (i) holds with a constant 1 + ΛN , where ΛN is the Lebesgue constant for the
given set of interpolation points, i.e., the ∞-norm of the mapping from data in
these points to their degree N polynomial interpolant on [−1, 1] [18]. The proof
of (i) is completed by noting that for the set of points (1.2), ΛN is bounded by
1+(2/π) logN [3]. Result (ii) can be proved by transplanting the interpolation prob-
lem to one of Fourier (= trigonometric) interpolation on an equispaced grid and using
the Poisson (= aliasing) formula together with the fact that a function of bounded
variation has a Fourier transform that decreases at least inverse-linearly; see Theo-
rem 4(a) of [27]. One might think that this result would be a standard one in the
literature, but its only appearance that we know of is as Corollary 2 in [16]. Condi-
tion (iii) is a standard result of approximation theory, due originally to Bernstein (see,
e.g., [14, Thm. 5.7] or [27, Thm. 5.6]). It can be proved, for example, by the Hermite
integral formula of complex analysis [7, 30].

It follows from condition (i) of Theorem 2.1 that the Chebyshev interpolant of a
function f on [−1, 1] is within a factor 10 of the best approximation if N < 105, a
factor 100 if N < 1066. Thus Chebyshev interpolants are near-best. Following familiar
terminology in certain circles, we may say that conditions (ii) and (iii) establish that
they are also spectrally accurate.

In our object-oriented MATLAB system, chebfuns are implemented as a class of
objects with directory @chebfun. The most fundamental operation one may carry out
is to create a chebfun by calling the constructor program chebfun.m. (From now on,
we omit the “.m” extensions.) For example, we might write

>> f = chebfun(’x.^3’)

By evaluating x3 in various points, the MATLAB code then determines automat-
ically, with high, though inevitably not perfect, reliability, how large N must be
to represent this function to a normwise relative accuracy of about 13 digits: in
this case, N = 3. The output returned by MATLAB from the above command,
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generated by the @chebfun code display, is a list of the function values at the points
x0 = 1, . . . , xN = −1:

ans = column chebfun

1.0000

0.1250

-0.1250

-1.0000

If we type whos, we get

Name Size Bytes Class

f -3x1 538 chebfun object

Note that we have adopted the convention of taking the “row dimension” of a column
vector chebfun to be the negative of its grid number N . This may seem gimmicky
at first, but one quickly comes to appreciate the convenience of being able to spot
continuous dimensions at a glance. Similarly, we find

>> size(f)

ans =

-3 1

>> length(f)

ans = -3

and thus, for example,

>> length(chebfun(’x.^7 -3*x + 5’))

ans = -7

These extensions of familiar MATLAB functions are implemented by @chebfun func-
tions size and length.

The function used to generate a chebfun need not be a polynomial, and indeed
our chebfun constructor has no knowledge of what form the function may have. It
simply evaluates the function at various points and determines a grid parameter N
that is sufficiently large. Thus, for example, we may write

>> g = chebfun(’sin(5*pi*x)’);

>> length(g)

ans = -43

Evidently 44 Chebyshev points suffice to represent sin(5πx) to close to machine preci-
sion. Our constructor algorithm proceeds essentially as follows (some details omitted).
On a given grid with parameter N , the Chebyshev expansion coefficients of the poly-
nomial interpolant through the given function values are computed by means of the
FFT (see section 5). A coefficient is considered to be negligible if it is smaller in mag-
nitude than twice machine precision times the largest Chebyshev coefficient computed
from the current grid. If the last two coefficients are negligible, then N is reduced to
the index associated with the last nonnegligible coefficient. Otherwise, N is doubled
and we start again. If convergence is not reached before N = 216, then the iteration
stops with this value of N and a warning message is printed.

It is clear from Theorem 2.1 that if a function is not smooth, the associated
chebfun may require a large value of N . For example, we find N = 248, 856, and
11750 for |x|7, |x|5, and |x|3, respectively; each of these computations takes much less
than 1 sec. on our workstation. For the function |x| the system quits with N = 216
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after about 1 sec. For any function, one has the option of forcing the system to use a
fixed value of N by a command such as f = chebfun(’abs(x)’,1000).

If f were a column vector in MATLAB, we could evaluate it at various indices by
commands like f(1) or f([1 2 3]). For a chebfun, the appropriate analogue is that
f should be evaluated at the corresponding arguments, not indices. For example, if f
is the x3 chebfun defined above, we get

>> f(5)

ans = 125.0000

>> f(-0.5)

ans = -0.1250

If g is the sin(5πx) chebfun, we get (after executing format long)

>> g(0:.05:.2)

ans =

0.00000000000000

0.70710678118655

1.00000000000000

0.70710678118655

0.00000000000000

The chebfun system does not “know” that g is a sine function or that sin(π/4) =
1/
√

2 ≈ 0.70710678118655, but the barycentric evaluation of the polynomial inter-
polant has computed the right results nonetheless.

If f and g are chebfuns of degrees Nf and Ng, then f+g is a chebfun of degree
N = max{Nf , Ng}. We compute f+g by evaluating the sum in each of the points
of the Chebyshev N grid, taking advantage of the FFT as described in section 5,
without automatically checking for fortuitous cancellation that might lower the degree.
Differences f-g are handled in the same way. Following standard conventions for
object-oriented programming in MATLAB, such operations are overloaded on the
usual symbols + and - by programs plus and minus. For unary operations of the form
+f and -f, we have codes uplus and uminus. The former is the identity operation,
and the latter just negates the data defining the chebfun. The functions real, imag,
and conj also have the obvious meanings and implementations.

Since chebfuns are analogous to vectors, the product f*g of chebfuns f and g

is dimensionally incorrect; it yields an error message. Instead, a correct notion is
pointwise multiplication f.*g, implemented by the function times. To compute f.*g
we evaluate the product of f and g on various Chebyshev grids until a sufficiently
large parameter N is found; this might be N = Nf + Ng, but usually it is smaller.
For example, we have

>> f = chebfun(’sin(x)’);

>> length(f)

ans = -13

but

>> length(f.*f)

ans = -16

The chebfun system, like MATLAB, also allows for adding or multiplying a scalar
with commands such as 3*f or 3+f, implemented by mtimes and plus, respec-
tively.
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Fig. 2.1. Results of plot(f) and plot(f,’.-’) for f = chebfun(’x.ˆ3-x’) (left) and f =

chebfun(’sin(5*pi*x)’) (right). The first plot in each pair is the basic one, showing the underlying
function. The second reveals the implementation by displaying the Chebyshev points at which this
function is defined.

Fig. 2.2. Result of plot(sin(16*x),sin(18*x)), assuming x = chebfun(’x’).

If v is a MATLAB vector of length k, plot(v) yields a broken-line plot of the k
entries of v against the numbers 1, . . . , k. If f is a chebfun, the appropriate output
should be a smooth curve plotted against [−1, 1]. This is achieved in the function plot

by evaluating f in 1000 Chebyshev points. Additional MATLAB plotting instructions
such as line types and colors and widths are passed along to the underlying MATLAB
plotting engine. As a special case, what should one do with the line type .-, which in
MATLAB normally produces dots connected by line segments? The right answer for
chebfuns is surely to produce the usual curve together with dots marking the points
of the underlying Chebyshev grid; see Figure 2.1.

As in MATLAB, one can also plot one chebfun against another with a command
like plot(f,g). An example is shown in Figure 2.2. The chebfun commands we have
described are summarized in Table 2.1.



THE CHEBFUN SYSTEM 1749

Table 2.1

Basic chebfun commands.

Typical command M-file Function
f = chebfun(’x’) chebfun.m Create a chebfun

whos size.m List variables
size(f) size.m Row and column dimensions

length(f) length.m Grid parameter N
plot(f) plot.m Plot against [−1, 1]

plot(f,’.-’) plot.m Plot and show grid points
semilogy(f) semilogy.m Semilog plot
f([.5 .6]) subsref.m Evaluate at specified points

f+g plus.m Sum
+f uplus.m Identity operator
f-g minus.m Difference
-f uminus.m Negation

f.*g times.m Pointwise product
f./g rdivide.m Pointwise division
f.\g ldivide.m Pointwise left division
3+f plus.m Scalar sum
3*f mtimes.m Scalar product
f/3 mrdivide.m Scalar division

f.ˆ3, 3.ˆf power.m Pointwise power
real(f) real.m Real part
imag(f) imag.m Imaginary part
conj(f) conj.m Complex conjugate

3. Elementary functions. A command like chebfun(’exp(sin(x))’) con-
structs a chebfun by evaluating the indicated function in various points. However,
often it is more convenient to compute elementary functions of chebfuns directly, as in

h = exp(sin(x))

assuming that x has previously been defined by x = chebfun(’x’). We have accord-
ingly overloaded a number of the elementary functions to make such computations pos-
sible (Table 3.1). The underlying algorithm is the same adaptive procedure employed
by the chebfun constructor, but there is a difference: chebfun(’exp(sin(x))’) eval-
uates the exponential at certain points determined by the sine function itself, whereas
exp(sin(x)) is constructed by evaluating the exponential at values determined by
the chebfun approximation to the sine function. The procedure should be the same up
to close to rounding errors, and indeed we usually find that the chebfuns are almost
identical:

>> f = chebfun(’exp(sin(x))’);

>> g = exp(sin(chebfun(’x’)));

>> [length(f) length(g)]

ans =

-21 -21

>> norm(f-g)

ans = 5.2011e-16

There are a number of MATLAB elementary functions which we have not im-
plemented for chebfuns because they return discontinuous results: fix, floor, ceil,
round, mod, and rem. We have, on the other hand, implemented certain other func-
tions for which discontinuities are sometimes an issue: sign, abs, sqrt, log, angle,
and division carried out by / or \. If these functions are applied to functions that
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Table 3.1

Elementary functions of chebfuns. The commands marked with daggers will be unsuc-
cessful if f passes through zero.

Typical command M-file Function
exp(f) exp.m Exponential
†log(f) log.m Logarithm
†sqrt(f) sqrt.m Square root
†abs(f) abs.m Absolute value
†sign(f) sign.m Sign
†angle(f) angle.m Argument
cos(f) cos.m Cosine
cosh(f) cosh.m Hyperbolic cosine
sin(f) sin.m Sine
sinh(f) sinh.m Hyperbolic sine
tan(f) tan.m Tangent
tanh(f) tanh.m Hyperbolic tangent
erf(f) erf.m Error function
erfc(f) erfc.m Complementary error function
erfcx(f) erfcx.m Scaled complementary error function
erfinv(f) erfinv.m Inverse error function

pass through zero, the results should be discontinuous (or in the case of sqrt, have
a discontinuous derivative). Such results are not representable within the chebfun
system, and, as before, the system quits with a warning message at N = 216.

4. Applications in approximation theory. We have already described enough
of the chebfun system to enable some interesting explorations in approximation theory,
which give a hint of how this system might be used in the classroom.

Gibbs phenomenon. A famous effect in approximation theory is the Gibbs phe-
nomenon, the tendency of interpolants and approximants to oscillate near points of
discontinuity [12]. We can illustrate this effect for interpolation in Chebyshev points
by the command

f = chebfun(’sign(x)’,25); plot(f,’.-’)

This command constructs the interpolant in 26 points to a function that is −1 for
x < 0 and 1 for x > 0. Figure 4.1 shows the result, with the expected oscillations.
(The command max(f) returns the number 1.2808, showing that the overshoot is
about 28%; see section 7.) The oscillations diminish away from the discontinuity,
but only algebraically; the contamination is global. This is the principal drawback of
global polynomial representations of functions: local irregularities have nonnegligible
global consequences, in contrast to other forms of approximations such as splines with
irregular meshes.

Smoothness and rate of convergence. According to Theorem 2.1(ii), the Cheby-
shev interpolant to the function f(x) = |x|5 will have errors of order O(N−5). We
can illustrate this with the sequence

s = ’abs(x).^5’

exact = chebfun(s);

for N = 1:60

e(N) = norm(chebfun(s,N)-exact);

end

loglog(e), grid on, hold on

loglog([1 60].^(-5),’--’)
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Fig. 4.1. The Gibbs phenomenon.
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Fig. 4.2. Fifth-order convergence for |x|5 (loglog scale).
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Fig. 4.3. Geometric convergence for 1/(1 + 6x2).

(The function norm, which implements (1.1), is described in section 6.) Figure 4.2
shows the result. On the other hand if f is analytic in a neighborhood of [−1, 1], then
by Theorem 2.1(iii) the convergence will be geometric. Figure 4.3 shows the result if in
the code above, s is changed to ’1./(1+6^x.^2)’. With semilogy instead of loglog,
this would be a straight line, whose slope is readily derived from Theorem 2.1(iii).

Interpolation of random data. Though the chebfun system is designed for smooth
functions, we can use it to illustrate the robustness of interpolation in Chebyshev
points by considering random data instead of smooth. The command

plot(chebfun(’rand(51,1)’,50),’.-’)

constructs and plots the degree 50 interpolant through data consisting of uniformly
distributed random numbers in [0, 1] located at 51 Chebyshev points. The result,
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Fig. 4.4. Degree 50 Chebyshev interpolation of 51 uniform random numbers.

Fig. 4.5. A two-dimensional analogue of the previous plot: the chebfun interpolant through a
101-point random walk.

shown in Figure 4.4, emphasizes how well behaved the interpolation process is; any
“wild oscillations” one might have expected to see are features of equispaced grids,
not Chebyshev, as indeed must be the case in view of Theorem 2.1(i). The same
robustness is illustrated in two dimensions in Figure 4.5, which shows the output of
the commands

x = chebfun(’cumsum(randn(101,1))’,100);

y = chebfun(’cumsum(randn(101,1))’,100);

plot(x,y,’.-’), axis equal

The points are those of a random walk in the plane with x and y increments nor-
mally distributed, and the curve has x and y coordinates given by the Chebyshev
interpolants through these data.

Extrapolation outside [−1, 1]. Polynomial interpolation in Chebyshev points is
beautifully well behaved, but extrapolation from these or any other points is another
matter. Suppose we again form the chebfun corresponding to sin(5πx) and then
evaluate this function not just in [−1, 1] but in a larger interval, say, [−1.4, 1.4]. A
suitable code is

g = chebfun(’sin(5*pi*x)’);

xx = linspace(-1.4,1.4)’;

plot(xx,g(xx),’.’)

The upper half of Figure 4.6 shows that the result is a clean sine wave in [−1, 1] and
a bit beyond, but has large errors for |x| > 1.3. The lower half of the figure quantifies
these errors with the command

error = abs(g(xx)-sin(5*pi*xx));

semilogy(xx,error,’.’)
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Fig. 4.6. Extrapolation of the Chebyshev interpolant of sin(5πx) on [−1, 1] to [−1.4, 1.4]. The
errors grow rapidly for |x| > 1.

Arguments related to Theorem 2.1(iii) [27, Chap. 5] show that outside [−1, 1], the
errors will be on the order of machine precision times (x+

√
x2 − 1)N , a formula which

matches the dots in the lower half of Figure 4.6 well. We emphasize that instability
in the sense of sensitivity to rounding errors is not the essential issue here. In theory,
if all the computations were performed exactly, these extrapolants would converge to
sin(5πx) as N → ∞ in any compact region of the complex plane, but this is only
because sin(5πx) is analytic throughout the complex plane. For a function analytic
just in a neighborhood of [−1, 1], according to the theory of “overconvergence” [30],
convergence in exact arithmetic will occur inside the largest ellipse of analyticity with
foci ±1. The problem we are up against is the ill-posed nature of analytic continuation,
which, although highlighted by rounding errors, cannot be blamed upon them.

5. Chebyshev expansions and FFT. For reasons of simplicity, we have chosen
to base the chebfun system on interpolation in Chebyshev points, not expansion in
Chebyshev polynomials [15, 22]. These two formulations are close cousins, however,
with the same excellent approximation properties [3], and one can travel back and
forth between the two at a cost of O(N logN) operations by means of the FFT.
Indeed, it is a crucial feature of our package that it takes advantage of the FFT in
implementing many operations, enabling us easily to handle vectors of lengths in the
tens of thousands.

Suppose we are given a chebfun p of grid number N and wish to determine its
Chebyshev expansion coefficients {ak}:

p(x) =
N∑

k=0

akTk(x).(5.1)

Another way to describe the {ak} would be to say that they are the coefficients of
the unique polynomial interpolant of degree ≤ N through the data values p(xj),
0 ≤ j ≤ N . The chebfun system includes a function chebpoly(f) that computes
these numbers. For example, we find

>> chebpoly(x.^3)

ans =

0.2500 0 0.7500 0



1754 ZACHARY BATTLES AND LLOYD N. TREFETHEN

since x3 = 1
4T3(x)+ 3

4T1(x), assuming again that x has been previously defined by x =

chebfun(’x’). Note that, following the usual MATLAB convention, the high-order
coefficients are listed first. Similarly, we have

>> chebpoly(exp(x))

ans =

0.00000000000004 0.00000000000104 0.00000000002498

0.00000000055059 0.00000001103677 0.00000019921248

0.00000319843646 0.00004497732295 0.00054292631191

0.00547424044209 0.04433684984866 0.27149533953408

1.13031820798497 1.26606587775201

The fact that the first (leading) coefficient is just above the level of machine preci-
sion illustrates that the chebfun constructor has selected the smallest possible value
of N . The chebpoly function is one of only three in the chebfun system that are not
extensions of functions in standard MATLAB, and accordingly we distinguish it in
Table 5.1 by an asterisk. The existing function in MATLAB is poly, which calculates
the coefficients in the monomial basis of the characteristic polynomial of a matrix. We
have overloaded poly to compute the coefficients in the monomial basis of a chebfun:

>> poly(x.^3)

ans =

1 0 0 0

>> poly((1+x).^9)

ans =

1 9 36 84 126 126 84 36 9 1

>> poly(exp(x))

ans =

0.00000000016343 0.00000000213102 0.00000002504800

0.00000027550882 0.00000275573484 0.00002480163504

0.00019841269739 0.00138888887054 0.00833333333348

0.04166666667007 0.16666666666667 0.49999999999976

1.00000000000000 1.00000000000000

Note that these last coefficients, unlike their Chebyshev counterparts, do not fall
as low as machine precision, reflecting the O(2N ) gap between the monomial and
Chebyshev bases. Polynomial coefficients in the monomial basis have the virtue of
simplicity, but few numerical virtues for the manipulation of functions on [−1, 1].1

The chebfun system computes them by calling chebpoly first and then converting
from one basis to the other with the recursion Tn+1(x) = 2xTn(x) − Tn−1(x). We
regard the outputs of poly as interesting for small explorations but not normally
useful in serious computations.

The implementation of chebpoly is based on the standard three-way identification
of a real variable x ∈ [−1, 1], an angular variable θ = cos−1x ∈ [0, 2π], and a complex
variable z = eiθ on the unit circle in the complex plane. As described, for example,
in Chapter 8 of [27], we have

Tk(x) = Rezk = 1
2 (zk + z−k) = cos kθ

1In terms of complex analysis, the number 2 comes from the fact that the logarithmic capacity of
the unit disk (1) is twice that of the unit interval ( 1

2
) [21]. The monomials are the Faber polynomials

for the unit disk, and naturally adapted to approximations there, whereas the Chebyshev polynomials
are the Faber polynomials for the unit interval. See [7, 30] and also [29].
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Table 5.1

Operations based on FFT. The asterisks mark functions that are not overloaded variants of
existing MATLAB functions. The function chebpoly is called internally by many chebfun functions
to speed up various computations by means of the FFT.

Typical command M-file Function
poly(f) poly.m Polynomial coeffs. of chebfun

∗chebpoly(f) chebpoly.m Chebyshev coeffs. of chebfun
∗chebfun([1 2 3]) chebfun.m Chebfun with given Chebyshev coeffs.

for each n ≥ 0. Thus (5.1) can be extended to

p(x) =

N∑
k=0

akTk(x) = 1
2

N∑
k=0

ak(z
k + z−k) =

N∑
k=0

ak cos kθ.(5.2)

In the x variable, p(x) is an algebraic polynomial determined by its values in the N+1
Chebyshev points x0, . . . , xN . In the z variable, it is a Laurent polynomial determined
by its values in the corresponding 2N roots of unity z0, . . . , z2N−1; this function of z
takes equal values at z and z and thus comprises N+1 independent numbers. In the θ
variable, the same function is a trigonometric polynomial determined by its values in
the 2N equally spaced points θ0, . . . , θ2N+1 with θj = πj/N ; in this case the function
takes equal values at θ and 2π − θ.

We use these identifications to transplant the Chebyshev coefficient problem to the
more familiar problem of computing trigonometric polynomial coefficients on a regular
grid in [0, 2π]—a discrete Fourier transform. This leads to the following method by
which we compute chebpoly(p): extend the data vector (p(x0), . . . , p(xN )) of length
N + 1 to a vector

(p(x0), . . . , p(xN−1), p(xN ), p(xN−1), . . . , p(x1))

of length 2N ; apply MATLAB’s fft function; extract the first N +1 entries in reverse
order; and divide the first and last of these numbers by 2N and the others by N .2

The inverse of the chebpoly operation should be a map from Chebyshev coeffi-
cients to chebfuns. According to the principles of object-oriented programming, this
process of construction of a chebfun object should be carried out by the standard
constructor program chebfun. Accordingly, our program chebfun is designed to pro-
duce chebfuns from two alternative kinds of input. If the input is a string, as in
chebfun(’exp(x)’), then the adaptive process described in section 2 is executed. If
the input is a numerical vector, as in chebfun([1 2 3]), then the input is interpreted
as a set of Chebyshev coefficients ordered from highest degree down, and the appro-
priate chebfun is constructed by means of the FFT, inverting the process described
above with the aid of MATLAB’s ifft function.

For example, we have

>> chebfun([1 2 3])

ans = column chebfun

6

2

2

2The ideas behind this algorithm are discussed in Chapter 8 of [27]. As mentioned there, this
algorithm could be speeded up by the use of the discrete cosine transform (DCT) rather than the
general complex FFT. However, although a DCT code is included in MATLAB’s Signal Processing
Toolbox, there is no DCT in MATLAB itself.
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The three numbers displayed are the values of T2(x) + 2T1(x) + 3T0(x) at x0 = 1,
x1 = 0, x2 = −1. Similarly,

plot(chebfun([1 zeros(1,10)]))

constructs a plot of T10(x) on [−1, 1] (not shown). The commands

r = randn(1,100000);

f = chebfun(r);

produce a chebfun with N = 100000 in a fraction of a second, and in a few more
seconds we compute

>> norm(r)

ans = 3.157618089537492e+02

>> norm(f)

ans = 3.160389611083427e+02

>> norm(r-chebpoly(f))

ans = 1.7236e-13

The first and third numbers are ordinary MATLAB norms of vectors, and the mid-
dle one is the norm of a chebfun. The approximate agreement of the first two re-

flects the fact that for large n,
∫ 1

−1
(Tn(x))2dx ≈ 1: for example, norm(chebfun([1

zeros(1,20)])) yields 0.9997.
We have shown how a user may go back and forth between function values and

Chebyshev coefficients with the FFT-based functions chebpoly and chebfun (see Ta-
ble 5.1). Most often, however, the FFT is used by various chebfun functions (which call
chebpoly internally) to speed up certain computations from O(N2) to O(N logN).
The guiding principle is this: to determine the values of a chebfun at an arbitrary
vector of points, use barycentric interpolation, but to determine values on a grid of
Chebyshev points (presumably with a different parameter N ′ from the parameter
N of f ), use the FFT. An electrical engineer would call this a process of “down-
sampling” or “upsampling” [20]. For upsampling, with N ′ ≥ N , we determine the
Chebyshev coefficients of f, pad them with N ′ − N zeros, and then inverse trans-
form to the N ′ grid. For downsampling, with N ′ < N , we determine the Chebyshev
coefficients of f and then fold N − N ′ of them back into the N ′ coefficients to be
retained by a process of aliasing. Thus, for example, if we downsample from f with
N = 20 to g with N ′ = 15, then a5(g) = a5(f) + a20(f). This operation is car-
ried out in the chebfun system by the private function prolong, not accessible to
the user.

6. Integration and differentiation. Many MATLAB operations on vectors
involve sums, and their chebfun analogues involve integrals (Table 6.1). The starting
point is the function sum. If f is a vector, sum(f) returns the sum of its components,
whereas if f is a chebfun, we want

sum(f) =

∫ 1

−1

f(x)dx.

The mathematical problem implicit in this command is that of determining the inte-
gral of the polynomial interpolant through data in a set of Chebyshev points (1.2).
This is the problem solved by the method known as Clenshaw–Curtis quadrature [4],
devised in 1960 and described in various references such as [5] and [13].
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Table 6.1

Chebfun functions involving integration or differentiation.

Typical command M-file Function
sum(f) sum.m Definite integral

cumsum(f) cumsum.m Indefinite integral
prod(f) prod.m Integral of product

cumprod(f) cumprod.m Indefinite integral of product
mean(f) mean.m Mean
norm(f) norm.m 2-norm
var(f) var.m Variance
std(f) std.m Standard deviation
x’*y mtimes.m Inner product

diff(f) diff.m Derivative

Clenshaw–Curtis quadrature becomes quite straightforward with the aid of the
FFT, and that is how we implement it.3 Given a chebfun f , we construct its Cheby-
shev coefficients a0, . . . , aN by a call to chebpoly and then integrate termwise using
the identity

∫ 1

−1

Tk(x)dx =

⎧⎨
⎩

0, k odd,

2

1 − k2
, k even.

(6.1)

The result returned from a command sum(f) will be exactly correct apart from the
effects of rounding errors. For example, here are some integrals the reader may or
may not know:

>> sum(sin(pi*x).^2)

ans = 1

>> sum(chebfun(’1./(5+3*cos(pi*x))’))

ans = 0.50000000000000

>> sum(chebfun(’abs(x).^9.*log(abs(x)+1e-100)’))

ans = -0.02000000000000

These three chebfuns have N = 26, 56, and 194. The addition of 1e-100 is needed in
the last example so that 0 log(0) comes out as 0 (almost) rather than NaN.

From the ability to compute definite integrals we readily obtain chebfun functions
for the three statistical operations of mean, variance, and standard deviation, with
functionality as defined by these expressions:

mean(f) = sum(f)/2

var(f) = mean((f-mean(f)).^2)

std(f) = sqrt(var(f))

Similarly we have

norm(f) = norm(f,2) = norm(f,’fro’) = sqrt(sum(f.^2))

since in MATLAB, the default norm is the 2-norm. Thus, for example, here is an

3The MATLAB code clencurt of [27] works well for smaller values of N , but as it is based on
explicit formulas rather than FFT, the work is O(N2) rather than O(N logN).
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unusual computation of
√

2/5:

>> norm(x.^2)

ans = 0.63245553203368

The evaluation of the 1- and ∞-norm variants norm(f,1) and norm(f,inf) is more
complicated and is discussed in section 7.

Inner products of functions are also defined by integrals. If f and g are chebfuns,
then the chebfun system produces a result for f’*g equivalent to

f’*g = sum(f.*g)

All these operations are very similar in that they come down to definite integrals
from −1 to 1. In addition, one may ask about indefinite integrals, and the appropriate
function for this is MATLAB’s cumulative sum operation cumsum. If f is a chebfun and
we execute g = cumsum(f), the result g is a chebfun equal to the indefinite integral
of f with the particular value g(−1) = 0. If f has grid number N (a polynomial of
degree N), g has grid number N + 1 (degree N + 1). The implementation here is
essentially the same as that of sum: we compute Chebyshev coefficients by the FFT
and then integrate termwise. The crucial formula is∫ x

Tk(x)dx =
Tk+1(x)

2(k + 1)
− Tk−1(x)

2(k − 1)
+ C, k ≥ 2(6.2)

(see [5, p. 195] or [15, p. 32]); for k = 0 or 1, the nonconstant terms on the right-hand
side become T1(x) or T2(x)/4, respectively. For an example of indefinite integration,
recall that the error function is defined by

erf(x) =
2√
π

∫ x

0

e−t2dt.

We can compare a chebfun indefinite integral to MATLAB’s built-in function erf as
follows:

>> f = chebfun(’(2/sqrt(pi))*exp(-t.^2)’);

>> erf2 = cumsum(f); erf2 = erf2 - erf2(0);

>> norm(erf2-erf(x))

ans = 4.1022e-16

The grid parameters for erf(x) and erf2 are 21 and 23, respectively.
MATLAB also includes functions prod and cumprod for products and cumulative

products. These are overloaded in the chebfun system by functions

prod(f) = exp(sum(log(f)))

cumprod(f) = exp(cumsum(log(f)))

If f is of one sign in [−1, 1], these will generally compute accurate results with no
difficulty:

>> prod(exp(x))

ans = 1

>> prod(exp(exp(x)))

ans = 10.48978983369024

If f changes sign, the computation will usually fail because of the discontinuity in-
volving the logarithm of 0, as discussed in section 3.
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The inverse of indefinite integration is differentiation, and in MATLAB, the in-
verse of cumsum (approximately) is diff: for example, diff([1 4 4]) = [3 0]. The
overloaded function diff in the chebfun system converts a chebfun with grid value N
to a chebfun with grid value N − 1 corresponding to the derivative of the underlying
polynomial. Again, for efficiency the computation is based on the FFT,4 making use
of the fact that if p(x) has the Chebyshev expansion p(x) =

∑N
k=0 akTk(x) as in (5.1),

then the coefficients {bk} of the expansion p′(x) =
∑N−1

k=0 bkTk(x) are

bk−1 = bk+1 + 2kak, 2 ≤ k ≤ N,(6.3)

and b0 = b2/2+a1, with bN = bN+1 = 0. (See (4.15)–(41.6) of [9] or [15, sect. 2.4.5].)
If a second argument is supplied to the diff function, the chebfun is differentiated
the corresponding number of times. Thus, for example,

>> f = sin(5*x);

>> g = diff(f,4);

>> norm(g)/norm(f)

ans = 625.0000000170987

The reader may enjoy comparing the following two results with their analytic values,
assuming as usual that x is defined by x = chebfun(’x’):

>> f = diff(sin(exp(x.^2)));

>> f(1)

ans = -4.95669946591073

>> g = chebfun(’1./(2+x.^2)’);

>> h = diff(g);

>> h(1)

ans = -0.22222222222299

It is not hard to figure out that if f is a MATLAB vector, we have

cumsum(diff(f)) = f(2:end)-f(1), diff(cumsum(f)) = f(2:end)

(apart from rounding errors, of course), whereas if f is a chebfun,

cumsum(diff(f)) = f-f(-1), diff(cumsum(f)) = f.

7. Operations based on rootfinding. MATLAB’s roots function finds all
the roots of a polynomial given by its coefficients in the monomial basis [19]. In
the chebfun system, the analogue is an overloaded function roots that finds all
the roots of a chebfun. As we shall see, this is not an optional extra but a cru-
cial tool for our implementations of min, max, norm(f,1), and norm(f,inf) (Ta-
ble 7.1).

What do we mean by the roots of a chebfun with grid number N? The natural
answer would seem to be, all the roots of the underlying degree N polynomial. Thus
we have a global rootfinding problem: it would not be enough, say, to find a single
root in [−1, 1]. Now the problem of finding roots of polynomials is notoriously ill-
conditioned [31], but the difficulty arises when the polynomials are specified by their

4As with integration, one could do this in a more direct fashion by means of the differentiation
matrices used in the field of spectral methods, as implemented, for example, in the program cheb

of [27]. Again, however, this approach involves O(N2) operations.
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Table 7.1

Operations based on rootfinding.

Typical command M-file Function
roots(f) roots.m roots

∗introots(f) introots.m Roots in [−1, 1]
max(f) max.m Maximum
min(f) min.m Minimum

norm(f,inf) norm.m ∞-norm
norm(f,1) norm.m 1-norm

coefficients. Here, they are specified by data in points well distributed in the interval
of primary interest, a different and better-behaved situation.

What is the “right” way to find these roots? This is one of the most interesting
mathematical problems we have encountered in designing the chebfun system. Other
than the paper [10], we are aware of no literature at all on this problem,5 a curious
situation in view of the fact that Chebyshev expansions are abundantly useful in
practice, whereas there are thousands of papers on the problem of roots of polynomials
in the relatively impractical monomial basis [17]. The method we have adopted makes
use of a transplantation from [−1, 1] to the unit circle, achieved as always with the
FFT. Given a chebfun f, we compute its Chebyshev coefficients {ak} as in section 5,
and then, following (5.2), we interpret these as coefficients of a Laurent polynomial

q(z) =
∑N

k=0 ak(z
k + z−k). The roots of q(z) in the z-plane are the same as those

of zNq(z), apart from some bookkeeping at z = 0, and this is a polynomial of degree
2N . We find the roots of zNq(z) by calling MATLAB roots, which makes use of
the QR algorithm for eigenvalues applied to a balanced companion matrix. It has
been observed that although this approach has an operation count of O(N3) rather
than O(N2), it is one of the most stable methods available for computing polynomial
roots [8, 26]. Because of the special structure of our coefficients, the roots we obtain
come in pairs {z, z−1}, which we transplant back to the x variable by the formula x =
(z+z−1)/2. This gives us as output from the roots function a total of N numbers. In
general, many of these will be spurious in the sense that they have nothing to do with
the behavior of f on or near [−1, 1]. Accordingly, we also provide a variant function

introots(f)

which returns only those numbers from roots that are contained in [−1, 1], in sorted
order.

For example, here is a solution to a problem sometimes found as an exercise in
numerical analysis textbooks:

>> introots(x-cos(x))

ans = 0.73908513321516

Since this function has just a single root, however, it does not showcase the global
nature of chebfun rootfinding. We can do that with

>> introots(x-cos(4*x))

ans =

0.31308830850065

-0.53333306291483

-0.89882621679039

5See the note added in proof.
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And here are the zeros in [0, 20] of the Bessel function J0(x):

>> f = chebfun(’besselj(0,10*(1+x))’);

>> 10*(1+introots(f))

ans =

2.40482555769577

5.52007811028631

8.65372791291101

11.79153443901428

14.93091770848778

18.07106396791093

These numbers are correct in every digit, except that the fifth one should end with
79 instead of 78 and the sixth should end with 92 instead of 93.

With the ability to find roots in [−1, 1], we can now perform some other more
important operations. For example, if f is a chebfun, what is max(f)? The answer
should be the global maximum on [−1, 1], and to compute this, we compute the
derivative with diff, find its roots, and then check the value of f at these points and
at ±1. The functions min(f) and norm(f,inf) are easy variants of this idea. Thus,
for example,

>> f = x-x.^2;

>> min(f)

ans = -2

>> max(f)

ans = 0.25000000000000

>> [y,x] = max(f)

y = 0.25000000000000

x = 0.50000000000000

>> norm(f,inf)

ans = 2

The computation of a 1-norm by norm(f,1) is carried out by similar methods.
The definition is

‖f‖1 =

∫ 1

−1

|f(x)|dx,

and since f may pass through 0, the integrand may have singularities in the form of
points of discontinuity of the derivative. To evaluate the integral we use introots

to find any roots of f in [−1, 1], divide into subintervals accordingly, and integrate.
Thus norm(f,1) reduces to introots(f) and cumsum(f). For example, with f as in
the example above, we find

>> norm(f,1)

ans = 1

One can combine our functions rather nicely into a little program for computing the
total variation of a function on [−1, 1]:

function tv = tv(f)

tv = norm(diff(f),1);
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With tv defined in this fashion we find, for example,

>> tv(x)

ans = 2

>> tv(sin(5*pi*x))

ans = 20.00000000000005

The O(N3) operation count of our roots, min, and max computations is out of
line with the O(N logN) figure for most other chebfun calculations, and it makes the
performance unsatisfactory for N 	 100. There is not much literature on rootfind-
ing for polynomials of high degrees, though an algorithm of Fox and Lindsey has
been applied to polynomials of degrees in the hundreds of thousands [24]. We are
investigating the possible use of this or other rootfinding algorithms in the chebfun
system.

8. Applications in numerical analysis. Having described a major part of the
chebfun system, we can now consider more applications. To begin with, let us deter-
mine some numbers of the kind that students learn how to compute in an introductory
numerical analysis course. For illustration we will take the function

f(x) = tan(x + 1
4 ) + cos(10x2 + ee

x

).(8.1)

The chebfun for this function (which turns out to have grid number N = 77) is
constructed in less than 0.1 sec. by

s = ’tan(x+1/4) + cos(10*x.^2+exp(exp(x)))’;

f = chebfun(s);

and the result of plot(f) is shown in Figure 8.1.
One topic in a numerical analysis course is quadrature. A standard approach

using the built-in adaptive MATLAB code gives

>> quad(s,-1,1,1e-14)

ans = 0.29547767624377

in about 7 secs. on our workstation; MATLAB’s alternative code quadl reduces this
figure to 1.6 secs. In the chebfun system, the adaptation has already taken place in
constructing the chebfun, and it takes just 0.02 secs. more to compute

>> sum(f)

ans = 0.29547767624377

Another basic topic is minimization. In standard MATLAB we find, for example,

>> opts = optimset(’tolx’,1e-14);

>> [x0,f0] = fminbnd(s,-1,1,opts)

x0 = -0.36185484293847

f0 = -1.09717538514564

From the figure it is evident that this result is a local minimum rather than the global
one. We can get the latter by refining the search interval:

>> [x0,f0] = fminbnd(s,-1,-.5,opts)

x0 = -0.89503073635821

f0 = -1.74828014625170

These calculations take around 0.05 secs. In the chebfun system the min function
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Fig. 8.1. A function to illustrate quadrature, minimization, and rootfinding.

gives the global minimum directly:

>> [f0,x0] = min(f)

f0 = -1.74828014625170

x0 = -0.89503073653153

The timing is somewhat worse, 0.25 secs., because of the O(N3) rootfinding operation.
Turning to rootfinding itself, in standard MATLAB we have

>> fzero(s,0)

ans = 0.24078098023501

and again it is clear from Figure 8.1 that this result is only local, since this function
has three zeros in [−1, 1]. In the chebfun system we get them all at once:

>> introots(f)

ans =

0.24078098023501

-0.57439914100933

-0.75298521313936

We shall now consider two applications from the field of ordinary differential
equations (ODEs). The first is in the area known as waveform relaxation. Suppose
we are given the nonlinear, variable coefficient ODE

u′ = e−2.75xu, −1 < x < 1, u(−1) = 0;(8.2)

we have picked the constant −2.75 to make the solution interesting. The problem can
be rewritten in integral form as

u(x) =

∫ x

−1

e−2.75suds,(8.3)

which suggests that we might try to solve (8.3) by Picard iteration, i.e., successive
substitution. The following code carries out this process with chebfuns:

x = chebfun(’x’);

uold = chebfun(’0’);

du = 1

while du > 1e-13

u = cumsum(exp(-2.75*x.*uold));

du = norm(u-uold);

uold = u;

end

u(1)
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Fig. 8.2. Solution of the ODE (8.2) by waveform relaxation.
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Fig. 8.3. Solution of the boundary-value problem (8.4) using cumsum.

It takes around 7 secs. for the solution to be found, with u(1) = 5.07818302388064.
The resulting chebfun, with N = 181, is plotted in Figure 8.2. For comparison, here
is a solution using standard ODE software:

opts = odeset(’abstol’,1e-14,’reltol’,1e-14);

[x,u] = ode45(@f,[-1,1],0,opts);

u(end)

function f = f(x,u)

f = exp(-2.75*x*u);

This code prints the number 5.07818302388075 in about 2 secs., and we do not claim
that the chebfun approach is in any way superior, merely that it is interesting. (We are
in the process of considering extensions of our system to tackle ODEs more directly.)

A variation on this theme of waveform relaxation would be to use chebfuns iter-
atively to find solutions to functional differential equations. We have used this idea
successfully for simple problems, such as finding a function f(x) on [−1, 1] such that
f(f(x)) = tanh(x), and are considering possible extensions to more challenging prob-
lems such as the approximation of Feigenbaum’s constant or Daubechies wavelets.

Our next example, also from the field of ODEs, concerns the linear boundary-
value problem

u′′ = e4x, −1 < x < 1, u(−1) = u(1) = 0.(8.4)

This problem is solved by a Chebyshev spectral method in Program 13 of [27]; the
exact solution is u(x) = [e4x −x sinh(4)− cosh(4)]/16. We can solve it in the chebfun
system with the sequence

f = exp(4*x);

u = cumsum(cumsum(f));

u = u - u(1).*(1+x)/2;

and Figure 8.3 shows the result, which is accurate to 14 digits.
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9. Chebfun quasi matrices. We are finally ready to move from vectors to ma-
trices (Table 9.1). Specifically, in this section we consider “matrices” that consist of a
discrete set of columns, each of which is a chebfun of the kind we have been discussing.
Thus our matrices are continuous in the row dimension, discrete in the column dimen-
sion. The idea of such objects is surely an old one, and they are mentioned explicitly
by de Boor [6] (“column maps”), Trefethen and Bau [28, p. 52] (“matrices with con-
tinuous columns”), and Stewart [25, p. 33] (“quasi matrices”). To be definite we shall
use the latter term.

We can explain the idea with an example built on x = chebfun(’x’) as usual:

>> A = [1 x x.^2 x.^3 x.^4]

A = column chebfun

1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 0.7071 0.5000 0.3536 0.2500

1.0000 0 0 0 0

1.0000 -0.7071 0.5000 -0.3536 0.2500

1.0000 -1.0000 1.0000 -1.0000 1.0000

>> size(A)

ans =

-4 5

We see that A is a matrix of five columns, each of which is a chebfun. In principle,
each might have a different grid value N , in which case the Chebyshev point data
defining A could be stored in a MATLAB cell array, but our implementation instead
forces all columns to share the same maximal value of N and stores the data in an
ordinary matrix. We can evaluate A at various points by commands like these:

>> A(3,5)

ans = 81.0000

>> A(0.5,:)

ans =

1.0000 0.5000 0.2500 0.1250 0.0625

>> A(:,3)

ans = column chebfun

1.0000

0.5000

0

0.5000

1.0000

Note that in each case the first argument is a function argument, and the second is
an index.

If c is a column vector of the appropriate dimension (namely, size(A,2)), the
product A*c should be a chebfun equal to the linear combination of the columns of A
with the given coefficients. Thus the sequence

>> c = [1 0 -1/2 0 1/24]’;

>> f = A*c;

>> norm(f-cos(x),inf)

ans = 0.0014

reveals that the maximum deviation of cosx on [−1, 1] from its fourth-order Taylor
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Table 9.1

Operations involving quasi matrices.

Typical command M-file Function

A = [f g h] horzcat.m Construction of quasi matrix

A([.5 .6],[2 3]) subsref.m Evaluate at specified points

A*x mtimes.m Quasi matrix times vector

[Q,R] = qr(A,0) qr.m QR factorization

[U,S,V] = svd(A,0) svd.m Singular value decomposition

cond(A) cond.m Condition number

rank(A) rank.m Rank

null(A) null.m Basis of nullspace

pinv(A) pinv.m Pseudoinverse

norm(A) norm.m Norm

A\b mldivide.m Least-squares solution

A’*B mtimes.m Inner product of quasi matrices

series approximation is about 0.0014. The figure becomes twenty times smaller for
the degree 4 Chebyshev interpolant, whose coefficients are only very slightly different:

>> c = poly(chebfun(’cos(x)’,4))

c =

0.0396 0 -0.4993 0 1.0000

>> f = A*c(end:-1:1)’;

>> norm(f-cos(x),inf)

ans = 6.4809e-05

Many familiar matrix operations make sense for quasi matrices. For example, if
A is a quasi matrix with n chebfun columns, then in the (reduced) QR decomposition
A = QR, Q will be another quasi matrix of the same dimension whose columns are
orthonormal, and R will be an n × n upper-triangular matrix. The chebfun system
performs the computation by a modified Gram–Schmidt method:

[Q,R] = qr(A,0)

Q = column chebfun

0.7071 1.2247 1.5811 1.8708 2.1213

0.7071 0.8660 0.3953 -0.3307 -0.8618

0.7071 0 -0.7906 -0.0000 0.7955

0.7071 -0.8660 0.3953 0.3307 -0.8618

0.7071 -1.2247 1.5811 -1.8708 2.1213

R =

1.4142 0 0.4714 0 0.2828

0 0.8165 0 0.4899 -0.0000

0 0 0.4216 -0.0000 0.3614

0 0 0 0.2138 -0.0000

0 0 0 0 0.1077

Similarly, the (reduced) SVD of A should be a factorization A = USV T , where U
has the same type as A, S is n × n and diagonal with nonincreasing nonnegative
diagonal entries, and V is n × n and orthogonal. We compute this by computing
first the reduced QR decomposition A = QR as above and then the ordinary SVD
R = U1SV

T ; we then have A = USV T with U = QU1:
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[U,S,V] = svd(A,0)

U = column chebfun

0.9633 -1.4388 1.7244 -1.7117 -1.8969

0.7440 -0.8205 0.1705 0.4315 0.9035

0.5960 0.0000 -0.7747 0.0000 -0.8958

0.7440 0.8205 0.1705 -0.4315 0.9035

0.9633 1.4388 1.7244 1.7117 -1.8969

S =

1.5321 0 0 0 0

0 0.9588 0 0 0

0 0 0.5181 0 0

0 0 0 0.1821 0

0 0 0 0 0.0809

V =

0.9130 0.0000 -0.4014 -0.0000 -0.0725

-0.0000 -0.8456 -0.0000 0.5339 0.0000

0.3446 -0.0000 0.6640 -0.0000 0.6636

-0.0000 -0.5339 -0.0000 -0.8456 -0.0000

0.2182 -0.0000 0.6308 0.0000 -0.7446

The function svd by itself gives just the singular values, i.e., the diagonal entries of S,
which can be interpreted as the semiaxis lengths of the hyperellipsoid that is the image
of the unit ball in n-space under A. The function cond gives the ratio of the maximum
and minimum singular values, and rank counts the number of singular values above
a prescribed tolerance, which defaults to a number on the order of machine precision.
Thus after the above calculations we have

>> cond(A)

ans = 18.9286

>> cond(Q)

ans = 1.0000

>> rank(A)

ans = 5

>> rank([1 x.^2 x.^2])

ans = 2

>> rank([sin(x) sin(2*x) sin(3*x) sin(4*x)])

ans = 4

>> rank([sin(2*x) sin(x).*cos(x)])

ans = 1

A moment ago we computed the QR factorization of the quasi matrix with
columns 1, x, x2, x3, x4. The resulting Q is a quasi matrix whose columns are orthog-
onal polynomials, each normalized to have 2-norm equal to 1. Thus the columns of
Q are the Legendre polynomials, except that the latter are conventionally normalized
to take the value 1 at x = 1. We can achieve that normalization like this:

>> for i = 1:5;

P(:,i) = Q(:,i)/Q(1,i);

end

plot(P)
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Fig. 9.1. The first five Legendre polynomials, computed by QR decomposition of the quasi
matrix whose columns are chebfuns for 1, x, x2, x3, x4.

which produces the familiar picture of Figure 9.1. For example, here are the coeffi-
cients of P4(x):

>> poly(P(:,5))

ans =

4.3750 -0.0000 -3.7500 0.0000 0.3750

From the QR factorization comes a ready ability to solve least-squares problems,
and this is implemented in an overloaded \ operator:

>> c = A\cos(x)

c =

1.0000

-0.0000

-0.4994

0.0000

0.0398

>> norm(A*c-cos(x),inf)

ans = 9.2561e-05

Note that this is comparable to the result found earlier by interpolation in Chebyshev
points.

Stewart has a half-serious remark in a footnote on p. 34 of his Afternotes Goes to
Grad School [25]:

If you introduce a formal mathematical object, people are likely to start

writing papers about it. Like “On the generalized inverse of quasi-matrices.”

Ugh!

Well, Pete, here we are, sooner than you could have imagined:

>> pinv(A)

ans = row chebfun

0.9375 -0.4980 1.7578 -0.4980 0.9375

-3.7500 1.9887 -0.0000 -1.9887 3.7500

-13.1250 7.7930 -8.2031 7.7930 -13.1250

8.7500 -1.5468 0.0000 1.5468 -8.7500

19.6875 -7.9980 7.3828 -7.9980 19.6875

The implementation is [U,S,V] = svd(A,0), pinv = V*inv(S)*U’.

10. Conclusion. The chebfun system is under development. One of our goals
is to find ways to make it more effective at solving problems by spectral collocation
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methods such as those embodied in the MATLAB programs of [27]. Another, already
partly achieved, is to extend the system to the case of “matrices” that are continuous
in both the column and row dimensions rather than just the latter. Such objects can
be regarded as bivariate functions on [−1, 1]×[−1, 1] or as integral operators. We have
already implemented a good deal of this functionality and hinted at the possibility of
continuity in the column dimension in the discussions of f’*g and pinv, but we will
not give details here as they have not yet settled down.

Computation in the chebfun system has a hybrid flavor: the feel is symbolic, but
the implementation is numerical. Having become used to this style of programming,
we find it powerful and appealing. Of course, true symbolic computation would
generally be better for those problems where it is applicable, but these are a minority.6

The class of problems whose solutions are merely smooth, as we have targeted here,
is much wider.

Many topics of numerical analysis can be illustrated in the chebfun system, as well
as some fundamental ideas of approximation theory, functional analysis, and object-
oriented programming; one can imagine many classrooms to which this system might
be able to contribute. MATLAB itself was originally introduced as an educational
tool, but eventually, it proved to be much more than that. Perhaps the chebfun
system too will mature in interesting ways.

Note added in proof. Since this paper was accepted for publication we have
become aware of a paper by Boyd that presents some of the same ideas [2]. Boyd is
not concerned with general operations on functions, nor with overloading MATLAB
commands, but with the specific subject of finding zeros of a function on an interval.
The algorithm he proposes is the same as ours in two crucial respects: he approximates
the function by a Chebyshev series of adjustable degree, and he finds the roots of
this approximation by a change of variables that transplants the unit interval to the
unit circle. Boyd then introduces a third powerful idea: recursive subdivision of the
rootfinding interval to reduce the cubic operation count that is otherwise entailed
in rootfinding. Following his lead, we have subsequently introduced recursion in the
chebfun rootfinding operations too and thereby reduced the computing time for such
operations, for large degrees, by an order of magnitude.
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