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Abstract.

In Matlab, it would be good to be able to solve a linear differential equation by
typing u = L\f, where f, u, and L are representations of the right-hand side, the solu-
tion, and the differential operator with boundary conditions. Similarly it would be
good to be able to exponentiate an operator with expm(L) or determine eigenvalues
and eigenfunctions with eigs(L). A system is described in which such calculations
are indeed possible, at least in one space dimension, based on the previously devel-
oped chebfun system in object-oriented Matlab. The algorithms involved amount to
spectral collocation methods on Chebyshev grids of automatically determined resolu-
tion.

AMS subject classification (2000): 65L10, 65M70, 65N35.
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1 Introduction.

Thousands of scientists, engineers, and numerical analysts use Matlab for
linear algebra computations. To solve a system of equations or a least-squares
problem, or to find eigenvalues or singular values, one need only type “\” or
“eig” or “svd”. Most of the time we don’t need to trouble ourselves with the de-
tails of the underlying algorithms such as Gaussian elimination or QR iteration.
This article describes a step toward achieving the same kind of easy operation
for differential equations.
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The system we shall introduce is built on the chebfun system, whose properties
we now briefly summarize [3, 4, 16, 20]. InMatlab, one may start with a vector v
and apply operations such as sum(v) (sum of the components), diff(v) (finite
differences), or norm(v) (square root of sum of squares). In the chebfun system
vectors are replaced by functions defined on an interval [a, b], and commands like
these are overloaded by their continuous analogues such as integral, derivative,
or L2-norm. The functions are represented, invisibly to the user, by interpolants
in suitably rescaled Chebyshev points cos(jπ/n), 0 ≤ j ≤ n, or equivalently
by expansions in rescaled Chebyshev polynomials, either globally or piecewise.
For example, the following commands construct a chebfun f corresponding to
f(x) = sin(x) + sin(x2) on the interval [0, 10] and plot the image shown on the
left in Figure 1.1.

>> f = chebfun(’sin(x)+sin(x.^2)’,[0,10]);

>> plot(f)

Figure 1.1: On the left, a chebfun, realized in this case by a polynomial interpolant
through 119 scaled Chebyshev points. On the right, the absolute values of the corre-
sponding Chebyshev coefficients, showing the automatically determined truncation at
the level of machine precision.

Here are the integral from 0 to 10, the norm, and the global maximum:

>> sum(f)

ans = 2.422742429006074

>> norm(f)

ans = 3.254782212326119

>> max(f)

ans = 1.985446580874098.

To construct the chebfun, the function is sampled at 9, 17, 33, . . . appropriately
scaled Chebyshev points, and in each case the polynomial interpolant through
these data is found and converted by FFT to coefficients of a Chebyshev expan-
sion. The process is terminated when the Chebyshev coefficients fall to a rela-
tive magnitude of about 10−16. We can verify this truncation with the following
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commands, which produce the plot on the right of Figure 1.1.

>> a = chebpoly(f);

>> n = length(f)

n = 119

>> semilogy(0:n-1,abs(a(n:-1:1))).

Evidently it only takes a polynomial interpolant through 119 Chebyshev points,
that is, a polynomial of degree 118, to represent this function f to machine pre-
cision. The integral, norm, and maximum are calculated by algorithms described
in [4].
Thus the central principle of the chebfun system is to evaluate functions in
sufficiently many Chebyshev points for a polynomial interpolant to be accurate to
machine precision. But what if the function of interest is only defined implicitly
as the solution of a differential equation? Can one develop a similar way of
solving problems with Matlab ease? In this paper we propose a method of
doing this based on collocation in the Chebyshev points and lazy evaluation
of the associated spectral discretization matrices, all implemented in object-
oriented Matlab on top of the chebfun system.
Chebops solve linear ordinary differential equations. One may then use them as
tools for more complicated computations that may be nonlinear and may involve
partial differential equations. This is analogous to the situation inMatlab itself,
and indeed in computational science generally, where the basic tools are linear
and vector-oriented but they are exploited all the time to solve nonlinear and
multidimensional problems.

2 Chebop syntax: eye, diff, cumsum, diag, expm.

This section introduces the grammar of chebops and illustrates what they can
do. The following two sections explain how they do it.
We begin by specifying a domain such as [0, 1], optionally generating at the
same time a chebfun x corresponding to the linear variable on that domain:

[d,x] = domain(0,1);

In a chebfun computation, one could now construct a function on this domain
and perform operations like differentiation:

f = cos(x); % make another chebfun

fp = diff(f); % 1st derivative

fpp = diff(f,2); % 2nd derivative

In the chebop system, we can construct differential and integral operators that
encapsulate such calculations. For example, here we construct a chebop corres-
ponding to the operator L : u �→ 0.0025u′′ + u on [0, 1]:

D2 = diff(d,2);

I = eye(d);

L = 0.0025*D2 + I;
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Syntactically speaking, what is going on in this sequence of operations is as
follows. The chebop system is implemented by means of four Matlab classes:
domain, chebop, oparray, and varmat. A domain object is an interval [a, b] on
which chebfuns and chebops may be defined. A chebop object is an operator
that can be applied to chebfuns. Oparray and varmat objects, which are not
normally relevant at user level, will be discussed in the next section. In the first
line above, the command diff has been overloaded so that when its first input
argument is a domain, the output is a chebop defined for that domain, in this
case a chebop corresponding to the second derivative operator. In the second line,
the command eye has been overloaded so that when its argument is a domain,
the output is a chebop corresponding to the identity operator for that domain.
(It is not actually necessary here to define I; the command L = 0.0025*D2 + 1
would have the same effect.) In the third line, the * and + operators have been
overloaded to apply to chebops, producing further chebops as output.
Via a further overload of the * operator, one can now apply L to a chebfun
defined on d. Here are two examples.

>> norm(L*f)

ans = 0.850701052485606

>> norm(L*sin(20*x))

ans = 4.979316639832139e-14

The second result reveals that sin(20x) is annihilated by L. (The fact that the
computed norm is a good deal larger than machine precision reflects standard
ill-conditioning in spectral discretizations, not inaccuracies of the chebop system
per se. For comments on how this effect can be avoided, see Section 7.)
To solve differential equations, we must impose boundary conditions and then
invert the operator. For example, this command augments L with the boundary
conditions u(0) = u(1) = 0:

L.bc = ’dirichlet’;

We can now solve a boundary value problem using the backslash operator; the
solution is plotted in Figure 2.1.

u = L\f; plot(u)

Here is confirmation that the solution has been achieved to high accuracy.

>> length(u)

ans = 35

>> norm(L*u-f)

ans = 4.407101448104595e-14

Since the output is a chebfun, we can apply further operations to it:

>> mean(u) % mean value of solution

ans = 0.793521203939255

>> u(0.5) % value at x=0.5

ans = 1.799943564035490
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Figure 2.1: Solutions to two boundary value problems 0.0025u′′ + u = f via u = L\f.

>> roots(u) % zeros of u

ans =

0

0.014418616029463

0.304557992965981

0.339742830044090

0.604543335555234

0.669638743984168

0.904061151243311

1.000000000000000

Different boundary conditions can also be imposed:

L.lbc = pi; L.rbc = sqrt(2); % inhomogeneous Dirichlet

L.lbc = {D,pi}; L.rbc = {D,sqrt(2)}; % inhomogeneous Neumann

L.bc = ’neumann’; % homogeneous Neumann

L.bc = ’periodic’; % periodic

The right side of Figure 2.1 shows the result obtained in the case of Neumann
boundary conditions at both ends. Here are the largest six eigenvalues of that
operator, calculated by a command eigs overloaded to apply to chebops:

>> eigs(L)

ans =

0.999999999999990

0.975325988997260

0.901303955989076

0.777933900975464

0.605215823956393

0.383149724931890

These numbers match the exact eigenvalues 1− π2k2/400 (k = 0, 1, . . . , 5) in all
but the final two digits.
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Another way to construct a chebop is by applying the overloaded “diag”
command to a chebfun g. The resulting chebop corresponds to the multiplication
operator L : u(x) �→ g(x)u(x). In the following example we determine the first
six eigenvalues of the harmonic oscillator operator L : u �→ −u′′ + x2u on the
real axis, here truncated to [−10, 10]:

>> [d,x] = domain(-10,10);

>> L = -diff(d,2) + diag(x.^2);

>> eigs(L)

ans =

1.000000000000143

3.000000000000008

5.000000000000036

7.000000000000032

8.999999999999998

10.999999999999966

The computation takes about 0.1 secs. on a 2008 workstation, and the results
closely match the exact eigenvalues 1, 3, 5, 7, 9, 11.
The chebop system also permits exponentiation. In Matlab, expm(A) com-
putes the exponential of a matrix A, and this command has been overloaded
to compute the exponential of a chebop. One can use expm(t*L) to compute
the solution at time t of a PDE ut = Lu with appropriate initial and boundary
conditions (see Example 5.5 of Section 5).
In summary, chebops can be constructed from the following operations:

eye(domain) % identity operator
zeros(domain) % zero operator
diff(domain) % differentiation operator
cumsum(domain) % indefinite integration operator
diag(chebfun) % multiplication operator
expm(chebop) % exponential of operator
scalar op chebop % op is +, -, *
chebop op scalar % op is +, -, *, /
chebop op chebop % op is +, -, *
chebop^posint % nonnegative integer power

When it comes to applying a chebop, there are two possibilities, both of which
produce chebfuns:

FORWARD MODE: chebfun = chebop*chebfun e.g. f = L*u

INVERSE MODE: chebfun = chebop\chebfun e.g. f = L\u

The chebfuns produced in all cases satisfy the chebfun constructor criteria, as
in Figure 1.1, so one may expect accuracy not too far from machine precision. In
addition, eigenvalues and optionally eigenfunctions of a chebop, or of a pair of
chebops defining a generalized eigenvalue problem Au = λBu, can be computed
with eigs.
Here is another example. We can solve the Airy equation u′′ − xu = 1 on
[−30, 30], with boundary conditions u(−30) = 0 and u(30) = 4, by the following
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sequence:

[d,x] = domain(-30,30);

L = diff(d,2) - diag(x);

f = chebfun(1,d);

L.lbc = 0; L.rbc = 4;

u = L\f;

The result is shown on the left in Figure 2.2, and the right side of the same figure
shows what happens if the equation is altered to u′′ + 0.1x2u = 1. The lengths
of the two chebfuns are 172 and 229, and their integrals are 9.52882658199204
and −36.0659308455985.

Figure 2.2: Left: solution to the Airy equation u′′−xu = 1 on [−30, 30] with boundary
conditions u(−30) = 0, u(30) = 4. Right: same but with −x replaced by +0.1x2.

3 Chebop implementation: lazy evaluation of spectral discretizations.

The implementation of chebops combines the numerical analysis idea of spec-
tral collocation with the computer science idea of lazy or delayed evaluation.
Let L be a chebop. There are various fields that define L (currently ten; see Sec-
tion 4), of which two are the crucial ones conceptually: L.oparray and L.varmat.
L.oparray is an oparray, a function handle or array of function handles that nor-
mally determines what happens when L is applied in forward mode. (An excep-
tion is the command expm; see Section 4.) For example, consider the following
sequence of three commands. On the right is shown the anonymous function
created as the oparray field in each case, which can subsequently be applied to
a chebfun u.

I = eye(d) −→ I.oparray = @(u) u

D = diff(d) −→ D.oparray = @(u) diff(u)

L = I + D −→ L.oparray = @(u) I(u)+D(u)

Whenever chebops are combined to make new chebops, L.oparray is updated
by operations such as these. The chebop system does not need to keep track
of the details; the bookkeeping resides in the anonymous functions. The reason
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“array” is part of the name is that for systems of equations, there is more going
on: an oparray is not just a single operator but a square array of operators, and
rules of array composition and addition have been implemented so that oparrays
can be combined algebraically.
L.varmat is a varmat, another new class that normally determines what hap-
pens when L is applied in inverse mode. A varmat is a matrix of undetermined
dimension, or rather a prescription for how to construct a matrix of arbitrary
dimension. For example:

>> I = varmat(@eye);

>> I(3)

ans =

1 0 0

0 1 0

0 0 1

>> J = I + 2*I;

>> J(5)

ans =

3 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3

One can combine varmats with the usual operations of algebra, and again the
bookkeeping is done by Matlab anonymous functions.
Here is what the chebop system does when it executes a command of the form
u = L\f, where L is a chebop and f is a chebfun. The chebfun constructor is
called to construct a chebfun u following the usual procedure involving sampling
at n = 9, 17, 33, . . . points, as outlined in Section 1. The new feature is what it
means to “sample” at n points. Given a value of n, the varmat associated with L
is instantiated as a matrix Ln and f is sampled at appropriate Chebyshev points
to yield a vector fn. Matlab’s ordinary backslash command is then invoked
to compute a vector un = Ln\fn. The process continues on successively finer
grids, as usual, until the Chebyshev coefficients of un fall to a relative magnitude
on the order of machine precision. (The actual termination condition has some
special features, discussed in the next section.)
If chebops were just multiples of the identity as in the example above, all this
would not be very interesting. The mathematical substance comes from the fact
that the matrices involved may be spectral discretizations of differential and inte-
gral operators. For example, in the computation u = L\f whose result is plotted
on the left in Figure 2.1, we have length(f) = 13 (since f is just a cosine) and
length(u) = 35 (since the small coefficient on the second derivative makes u
oscillate). The length of u has been determined automatically, with no explicit
connection to the length of f.
The spectral discretizations we employ are standard ones based on polynomial
interpolants in Chebyshev points as described in [6, 9, 19]. For example, to
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differentiate a function spectrally, one interpolates it by a polynomial in Cheby-
shev points, differentiates the interpolant, and evaluates the result at the same
points. This is equivalent to a matrix-vector multiplication, and the process can
be inverted (or could be if this were not a singular example) by solving a linear
system of equations. The requisite matrix is constructed from standard formulas
based on the code cheb of [19]. The precise matrix formulations for the inverse
mode inevitably depend on boundary conditions, and it is these that make the
matrices nonsingular. Chebop boundary conditions are imposed in standard ways
as described in Chapters 7 and 13 of [19] and Chapter 6 of [6]. Each boundary
condition at the left end of a domain involves the modification of one of the
initial rows of the spectral matrix, and each boundary condition on the right
modifies one of the final rows.
For example, here is the second-order spectral differentiation matrix on a grid
of 5 points in [−1, 1], with no boundary conditions:

>> d = domain(-1,1);

>> D2 = diff(d,2);

>> D2(5)

ans =

17.0000 -28.4853 18.0000 -11.5147 5.0000

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

5.0000 -11.5147 18.0000 -28.4853 17.0000

If we apply Dirichlet boundary conditions, the first and last rows are replaced
by corresponding rows of the identity:

>> D2.bc = ’dirichlet’;

>> D2(5)

ans =

1.0000 0 0 0 0

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

0 0 0 0 1.0000

With Neumann boundary conditions, the first and last rows are replaced by
corresponding rows of the first derivative operator:

>> D2.bc = ’neumann’;

>> D2(5)

ans =

-5.5000 6.8284 -2.0000 1.1716 -0.5000

9.2426 -14.0000 6.0000 -2.0000 0.7574

-1.0000 4.0000 -6.0000 4.0000 -1.0000

0.7574 -2.0000 6.0000 -14.0000 9.2426

0.5000 -1.1716 2.0000 -6.8284 5.5000
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4 Further details.

We now give more details about some of the features of the chebop system.

Sparse matrices. Where possible, our algorithms make use of Matlab sparse
matrices [10], and in particular, these are the formats produced by the eye and
diag operations. For example, the program eye.m in the @domain directory – i.e.,
the overloaded eye command that is invoked when the argument is a domain –
essentially consists of one line: I = chebop(@speye,@(u)u,d). This constructs
the chebop I that generates matrices fromMatlab’s speye command in inverse
mode and acts like @(u)u in forward mode.

Piecewise smooth chebfuns. The chebfun system is designed to work with piece-
wise as well as globally smooth functions. For example, the command f =
chebfun(’abs(x)’) produces a chebfun on [−1, 1] with two linear pieces. For
the most part, however, the chebop system is not currently able to operate with
piecewise smooth chebfuns. An exception is the expm command, which makes it
possible in some cases to calculate chebfuns of the form expm(L)*f even when f
is only piecewise smooth (because the result is smooth even though f is not, and
no matrix inverse is involved). Such a calculation is illustrated in Example 5.5
of the next section.

More about boundary conditions. We have mentioned the basic method of im-
posing boundary conditions in the chebop system: replacement of rows at the
beginning and/or end of the matrices defining the chebop by corresponding rows
of other matrices. These normally correspond to the identity or a derivative, but
arbitrary matrices are allowed. The entries of the right-hand-side vector get
adjusted in the same positions according to what boundary values have been
specified. When the boundary condition is specified as ’periodic’, we find our-
selves in the nonstandard situation of solving problems by Chebyshev methods
that would normally get a Fourier treatment. For a differential operator of order
d, d rows of the matrix are replaced by differences of rows of appropriate spectral
differentiation matrices to enforce the conditions u(ν)(a) = u(ν)(b), 0 ≤ ν ≤ d−1,
where a and b are the endpoints of the domain.

Accuracy and filtering. When a chebfun is constructed, the aim is always accu-
racy close to machine epsilon, although safeguards are built into the constructor
to minimize the risk of failure of convergence in difficult cases. For chebops,
difficult cases are almost universal because of the ill-conditioning associated
with spectral discretizations. As the examples in this article show, it is com-
mon to lose three or four digits of accuracy in such computations, and this
figure can be much worse, for example in the case of a fourth-order operator
on a fine grid. Accordingly, a crucial feature of the chebop system is a proce-
dure to weaken the convergence criterion so as to stop when a “noise plateau”
appears to be reached. This is achieved through the use of a function called
filter.
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Adjustable scaling. Ordinarily in the chebfun and chebop systems, as in IEEE
arithmetic, all calculations and convergence criteria are relative: if you multiply
a function by 10−100, its chebfun will be multiplied by 10−100 too. In particular,
when a chebop is constructed, normally the constructor will aim to achieve a pre-
cision about 15 orders of magnitude below the scale of the function, or as close to
this as the filtering process just described allows. However, there are situations
where it is wasteful or impractical to seek so much accuracy. For example, in
a Newton iteration for a nonlinear problem, one might at some step add a correc-
tion of size 10−10 to a function whose accuracy will ultimately be 10−14. In such
a case there is no point in trying to resolve the correction to more than four rel-
ative digits. Similarly in a time-dependent calculation, if the time discretization
is far below machine accuracy, one may wish to loosen the accuracy criterion for
the space discretization too. The chebop system provides a field L.scale which
can be used to achieve such effects (see Examples 6.1 and 6.2 of Section 6).

Storage of LU factors. A calculation of the form u = L\f generates matrices Ln
of various dimensions and solves corresponding linear systems of equations using
Matlab’s backslash command, based on LU factorization. The amount of work
involved is O(n3) for each matrix, and this becomes a problem if n is larger than
in the hundreds. Even for n in the hundreds, the operation count is a problem
in contexts where chebops are to be applied over and over again, for example in
time-stepping for solving time-dependent PDEs. To speed up such calculations,
the chebop system includes an option whereby, whenever a linear system is to
be solved involving a matrix Ln, a check is made as to whether this matrix has
appeared before. If not, its LU factors are computed and stored in a Matlab
persistent variable. If so, previously stored LU factors are recalled from storage
so that the system can be solved with O(n2) work. All this happens invisibly
to the user and makes some PDE calculations feasible that would otherwise be
very slow. See Example 6.1 of Section 6.

Chebop fields. Section 3 described two of the fields defining a chebop, namely
oparray (for forward mode) and varmat (for inverse mode, describing matrices
with boundary conditions), and we have also mentioned the field L.scale. In
addition there are seven other fields. fundomain is the domain on which the
chebop is defined. difforder and numbc keep track of the order of a differen-
tial operator and of the number of boundary conditions, respectively; a warning
message is printed if one attempts a computation L\f where the two do not
match. difforder also stores information needed to implement the mnemon-
ics ’dirichlet’, ’neumann’, and ’periodic’. lbc and rbc store information
related to the left and right boundary conditions. ID stores an identification
number to enable the system to know whether a chebop is new or old for the
storage and retrieval of LU factors. blocksize stores information related to the
solution of systems of equations.

How expm works. If L is a chebop and f is a chebfun, then in most cases
L*f is computed from an operator representation L.oparray and L\f from
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a matrix representation L.varmat. However, for some chebops an operator rep-
resentation is not available, and here both L*f and L\f are computed from
matrices. In particular, this is the situation with expm: both expm(L)*f and
expm(L)\f are computed from matrices constructed from Matlab’s expm com-
mand.

How eigs works. InMatlab, eig is the command for dense matrix eigenvalue
and generalized eigenvalue problems, where all eigenvalues are computed by the
QR algorithm and related methods as in LAPACK [2], and eigs is the command
for sparse problems, where a small number of eigenvalues are computed by the
implicitly restarted Arnoldi iteration of ARPACK [12]. In the chebop system
the functionality required is that of eigs: an operator will generally have in-
finitely many eigenvalues, and we want to find a finite number of them. The
chebop eigenvalue command is accordingly called eigs, but its implementation
is actually based on applying Matlab eig to dense matrices, retaining what-
ever types of boundary conditions have been specified but taking them to be
homogeneous.
It is a tricky matter to decide which modes ought to be returned by eigs, and
how to use the chebfun constructor to determine when they have been found
accurately. Our approach is as follows. As with the standard Matlab eigs,
the user may explicitly request any number of eigenvalues of largest or small-
est magnitude, or of smallest or largest real part, or those closest to a given
complex number λ0. If the user does not give this information, the function
computes eigenvalues of matrices at sizes 33 and 65. If all of the eigenvalues
change significantly during this refinement, the one that changes the least is
taken to be λ0. If some eigenvalues change very little, the changes could be
largely due to rounding error, so their eigenvectors are analyzed and the eigen-
vector with the smallest 1-norm of Chebyshev expansion coefficients is used to
select λ0.
Once λ0 is determined, the chebfun constructor is called. It samples a func-
tion that finds a discrete eigendecomposition, sorts eigenvectors according to the
given eigenvalue criterion, and returns a fixed, randomly selected linear combi-
nation of the number of eigenvectors requested by the user. In this way, the
constructor adapts to information from all of the eigenfunctions without risking
an accidental cancellation that could result from, say, a simple sum of them.
Both the automatic selection of λ0 and the convergence criterion work well in
many applications, but these methods are undoubtedly susceptible to failure,
particularly for highly non-normal operators. As a practical safeguard, eigs ex-
its with an error message if the adaptively selected discretization grows larger
than size 1025.

Systems of equations. The chebop system can also solve problems involving
k > 1 coupled variables. In such a case the variables are stored not just as
chebfuns but as “quasimatrices” whose “columns” are chebfuns. The chebops
that operate on such structures have an appropriate k × k block form. We shall
not give details apart from Example 5.6 below.
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5 Examples and applications.

In this section we present six further examples of linear ODE calculations,
illustrating a number of variations:

• initial-value problems (Examples 5.1, 5.6)
• variable coefficients (Examples 5.2, 5.3, 5.4)
• periodic boundary conditions (Example 5.3)
• eigenvalue and generalized eigenvalue problems (Examples 5.3, 5.4)
• complex variables (Example 5.4)
• fourth-order differentiation (Example 5.4)
• exponentiation of an operator (Example 5.5)
• piecewise smooth functions (Example 5.5)
• systems of equations (Example 5.6).

In each case we report one or more numerical quantities as points of comparison
for others who may wish to perform tests on the same problems.

Example 5.1 (Initial-value problem). The first example shows the use of
chebops to solve a 2nd-order initial-value problem:

u′′ + π2u = 0, u(0) = 1, u′(0) = 0.(5.1)

The following code performs the calculation, producing the chebfun plotted in
Figure 5.1, a good approximation to the exact solution cos(πx).

d = domain(0,40); D = diff(d);

L = D^2 + pi^2;

L.lbc(1) = 1; L.lbc(2) = D;

u = L\0;

Notice that the first boundary condition is implicitly taken to be Dirichlet, since
the type is not specified, and the second is implicitly taken to have value 0, since
the value is not specified. An inspection of the solution reveals length(u) = 119
and u(40) = 1.000000000017879.

Figure 5.1: The function u(x) = cos(πx) computed as the solution to the initial-value
problem (5.1). The chebfun has length 119 and the accuracy is about 12 digits.

Example 5.2 (Bessel equation). Next we consider a boundary-value problem
for the Bessel equation,

x2u′′ + xu′ + (x2 − ν2)u = 0, x ∈ [0, 60], x(0) = 0, x(60) = 1,(5.2)
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with ν = 1. The solution is a multiple of the Bessel function J1(x), namely
u(x) = J1(x)/J1(60). The left side of Figure 5.2 shows the solution computed
with the following code:

[d,x] = domain(0,60);

I = eye(d); D = diff(d); X = diag(x);

L = X^2*D^2 + X*D + (X^2-I);

L.lbc = 0; L.rbc = 1;

u = L\0;

Figure 5.2: On the left, solution to the Bessel boundary-value problem (5.2) for ν = 1,
with length 77. On the right, the same with the left boundary moved from x = 0 to
x = 10.

We can further examine the solution with these commands:

>> exact = chebfun(’besselj(1,x)’,d)/besselj(1,60);

>> error = norm(u-exact,inf)

error = 8.929810672665855e-12

>> tv = norm(diff(u),1)

tv = 150.4756276607209

The first shows that the overall accuracy is about 11 digits. The second reports
the total variation of the solution.
The right side of Figure 5.2 shows the result of a repetition of the same com-
putation, but now with the left-hand boundary point moved from x = 0 to
x = 10. As a result of this change, the solution is now a linear combination
of J1(x) and Y1(x), the Neumann function of the same order. (Of course the
chebop system does not know anything about Bessel and Neumann functions; it
just computes solutions numerically.) The computed total variation changes to
154.2015444041971.

Example 5.3 (Mathieu equation). Our third example is an eigenvalue problem
with periodic boundary conditions, the Mathieu equation:

Lu = λu, Lu = −u′′ + 2q cos(2x)u, u ∈ [−π, π],(5.3)



THE CHEBOP SYSTEM 715

where q is a real parameter. A chebop code looks like this:

q = 10;

[d,x] = domain(-pi,pi);

L = -diff(d,2) + 2*q*diag(cos(2*x));

eigs(L & ’periodic’)

This program produces the following values of the first six eigenvalues, which
match values reported on pp. 748–749 of [1]. A check in Mathematica shows that
all but the last three digits are correct in each case.

-13.936979956658631 -13.936552479250203 -2.399142400035606

-2.382158235956632 7.717369849779567 7.986069144681781

Example 5.4 (Orr–Sommerfeld operator). The fourth example is an Orr–
Sommerfeld eigenvalue problem. This is a generalized eigenvalue problem of
fourth order involving complex variables and two parameters R, the Reynolds
number, and α, a wave number:

Au = λBu, B = (D2 − α2I), A = B2/R− iα(2 + (1− x2)B).(5.4)

The domain is [−1, 1] and the boundary conditions are u(−1) = u′(−1) = u(1) =
u′(1) = 0. This problem is associated with the eigenvalue instability of plane
Poiseuille fluid flow, and in the code below, R and α are set to their critical
values R = 5772.22 and α = 1.02056, first determined by Orszag in 1971 [15].

[d,x] = domain(-1,1);

I = eye(d); D = diff(d);

R = 5772.22; alpha = 1.02056;

B = D^2 - alpha^2;

A = B^2/R - 1i*alpha*(2+diag(1-x.^2)*B);

A.lbc(1) = I; A.lbc(2) = D;

A.rbc(1) = I; A.rbc(2) = D;

e = eigs(A,B,50,’LR’);

Figure 5.3: Eigenvalues of Orr–Sommerfeld operator (5.4) with critical parameters R
and α. The seven dots on the lower-right branch each correspond to two eigenvalues
very close to one another.
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The computed eigenvalues are plotted in Figure 5.3. The choices of parameters
are such that, to six or more digits, the rightmost eigenvalue in the complex
plane should have real part equal to zero. This expectation is met nicely by the
numerical value of that eigenvalue, 0.0000000505− 0.2694296366i.

Example 5.5 (Heat and advection-diffusion equations). Our fifth example
shows the exponentiation of an operator, in this case the second derivative oper-
ator on the interval [−4, 2] with boundary conditions u(−4) = u(2) = 0. If L is
this operator and f is a function defined on [−4, 2], then the solution to the heat
equation

ut = uxx, x ∈ [−4, 2], u(x, 0) = f(x), u(−4, t) = u(2, t) = 0(5.5)

at time t > 0 is given by

u(t) = etLf.(5.6)

(Properly speaking, the notation etL refers to a semigroup with generator L,
but we will not concern ourselves with a rigorous formulation.) In the following
code, the initial function is taken as a hat function, represented in the chebfun
system through the piecewise smooth feature [16].

[d,x] = domain(-4,2);

L = diff(d,2); f = max(0,1-abs(x));

hold off, plot(f), hold on

for t = .1:.1:.5

expLt = expm(t*L & ’dirichlet’);

v = expLt*f;

plot(v)

end

The left side of Figure 5.4 shows a successful computation; the maximum value
at the end is 0.368610340795447. For any t > 0, the solution is smooth and
in principle this construction will work, but for very small t the length of the
chebfun will be large and the computation based on exponentials of matrices
very slow. Experiments show that the lengths of the solution chebfuns for t =
10−1, 10−2, 10−3, 10−4 are 68, 157, 291, 751.
The right side of Figure 5.4 shows the effect of adding an advection term
to the equation, specifically, replacing L = diff(d,2) by L = diff(d,2) +
20*diff(d). Now the maximum value at the end is 0.165845979585510.

Example 5.6 (A system of equations). Consider two masses m with rest
positions x1 and x2 coupled together by a spring of constant k, with the first
mass coupled to a wall by another spring of the same constant. If friction terms
of constant c are included, the free motions x1(t), x2(t) are governed by the
equations

mx′′1 + cx
′
1 + 2kx1 − kx2 = 0, mx

′′
2 + cx

′
2 + kx2 − kx1 = 0.(5.7)
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Figure 5.4: On the left, solution to the time-dependent PDE (5.5) at t = 0, 0.1, . . . , 0.5
computed by the operator exponential expm. On the right, the same except with
an advection term 20ux added to the equation. Note: although expm can work with
non-smooth inputs like these when the output is smooth, most chebop operations are
restricted at present to globally smooth chebfuns.

We choose to solve this equation as an initial value problem on the time interval
0 ≤ t ≤ 20 with initial conditions

x1(0) = −1, x2(0) = 1, x
′
1(0) = x

′
2(0) = 0.(5.8)

This problem has the form of a 2×2 system: a block 2×2 second-order operator
times a block 2×1 vector of unknown functions x1(t) and x2(t) equals a block 2×1
vector of zero functions. As the code below shows, in the chebop system one sets
up the problem in just this form, apart from one alteration: for implementation
reasons the 2× 1 vectors are actually stored as quasimatrices, which one would
normally think of as corresponding to shape 1× 2 rather than 2× 1. Note that
the boundary conditions, all at the initial point t = 0, are also expressed in
terms of block operators. With Z defined as a zero operator, the chebops [I Z]
and [Z I] apply to the values of first and second variables of the system, and
similarly, [D Z] and [Z D] apply to x′1 and x

′
2. The plot is shown in Figure 5.5.

The computed energy of the system at t = 20 is 0.024320893389668.

[d,t] = domain(0,20);

D = diff(d); I = eye(d); Z = zeros(d);

m = 1; k = 4; c = 0.3;

A = [m*D^2+c*D+2*k*I -k*I; -k*I m*D^2+c*D+k*I];

A.lbc(1) = {[I Z],-1}; % pull x1 left

A.lbc(2) = {[Z I], 1}; % pull x2 right

A.lbc(3) = [D Z]; % x1 at rest

A.lbc(4) = [Z D]; % x2 at rest

u = A\[0*t 0*t];

x1 = x(:,1); x2 = x(:,2);

energy = m*(diff(x1).^2+diff(x2).^2)/2 + k*(x1.^2+(x2-x1).^2)/2;

energybound = sqrt(energy/k);

plot(u), hold on, plot(energybound)
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Figure 5.5: Solution of the coupled mass-spring system (5.7)–(5.8). The thin solid and
dashed curves show the positions of the two masses as functions of time t, and the
thick solid curve represents a pointwise upper bound derived from consideration of
potential and kinetic energy. Note that the energy bound is flat at points of maximum
amplitude, since the velocity is zero there and thus there is no damping.

6 Nonlinear problems and PDEs.

The previous sections have explored numerical methods and software for basic
problems related to linear ordinary differential equations. As mentioned earlier,
these tools provide a foundation for more complicated computations involving
nonlinearity and/or partial differential equations. This is a large and open-ended
area, and we illustrate just a few of the possibilities by presenting two examples
involving first the solution of a nonlinear time-dependent PDE by time-stepping,
then the solution of a nonlinear ODE by Newton iteration.

Example 6.1 (Nonlinear Schrödinger equation). The cubic nonlinear Schrö-
dinger equation

ut =
i

2
uxx + i|u|

2u = Lu+G(u)(6.1)

admits on −∞ < x <∞ the soliton solution 4ei(2x+6t)sech(4(x−2t)), a complex
pulse traveling at speed 2. We solve this equation on the finite interval [−4, 4]
with homogeneous Dirichlet boundary values by using chebops for the space
discretization and standard ODE formulas for the time discretization. Since the
time discretization is of a low order, the overall accuracy will be less than machine
precision. We accordingly weaken the chebop accuracy condition about eight
orders of magnitude by specifying A.scale = 1e8, though the ultimate effect of
this adjustment proves to be a reduction in computing time by only about 30%.
The computation begins by setting up the domain, the operators L and G,
and the initial condition:

[d,x] = domain(-4,4);

L = 0.5i*diff(d,2);

G = @(u) 1i*u.*(u.*conj(u));

u = 4*exp(2i*x).*sech(4*x); u = u-u(4);
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Next we initiate the time-stepping with two steps of a first-order method: back-
ward Euler on the linear term and forward Euler on the nonlinear term.

tmax = 6; dt = 0.01;

A = (1-dt*L) & ’dirichlet’; A.scale = 1e8;

Gu = zeros(d,1);

for n = 1:2

Gu(:,n) = G(u(:,n));

f = u(:,n) + dt*Gu(:,n);

u(:,n+1) = A\f;

end

There are now enough data levels present to start up a higher-order time-stepping
scheme. Our choice is the implicit/explicit formula

3

2
un+1− 2un+

1

2
un−1 =∆t

(
Lun+1+

8

3
G(un)−

7

3
G(un−1) +

2

3
G(un−2)

)
,(6.2)

a combination of the second-order backward difference formula for L and the
third-order Adams–Bashforth formula for G, chosen for its stability on a part
of the imaginary axis. For each new time level, (6.2) together with the Dirich-
let boundary conditions defines a linear boundary-value problem for the un-
known un+1.

A = (1.5-dt*L) & ’dirichlet’; A.scale = 1e8;

for n = 3:tmax/dt

Gu(:,3) = G(u(:,n));

f = u(:,n-1:n)*[-0.5;2] + Gu*([2;-7;8]*dt/3);

u(:,n+1) = A\f;

Gu(:,1) = Gu(:,2); Gu(:,2) = Gu(:,3);

end

In this application, since the time step is fixed, the linear operator defining the
boundary-value problem never changes. This is a great advantage, for it means
that the LU factors of discrete instances of the operator are computed just once
and retrieved from memory thereafter, all invisibly to the user, as described
in Section 4.

The following lines produce the plot shown in Figure 6.1.

xx = linspace(d,120); tt = dt*(0:8:400); uu = u(xx,1:8:401);

waterfall(xx,tt,abs(uu)’)

Example 6.2 (Tracy–Widom distribution for random matrices). Our final
example stems from a problem arising in random matrix theory. Mathematically,
the main computation involves a nonlinear ODE boundary-value problem with
boundary conditions derived from truncating an infinite domain.
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Figure 6.1: Solution of the cubic Schrödinger equation (6.1) by chebop discretization
in x and finite differencing in t.

The boundary-value problem concerns the Hastings–McLeod connecting orbit
of the Painlevé II equation,

u′′(x) = 2u(x)3 + xu(x),

u(x) =
√
−x/2

(
1 +
1

8
x−3 −

73

128
x−6 +

10657

1024
x−9 +O(x−12)

)
(x→ −∞),

u(x) ∼ Ai(x) (x→∞).

We solve this by a Newton iteration using a function newton that also works for
finite dimensional systems:

function x = newton(f,df,x,tol)

while true

dx = -(df(x)\f(x));

x = x + dx;

if norm(dx) <= tol, break; end

end

We solve the problem with the code

function u = hml

[d,x] = domain(-30,8);

D = diff(d);

function f = residual(u)

f = D^2*u - (2*u.^3 + x.*u);

end
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function J = jacobian(u)

J = D^2 - diag(6*u.^2 + x) & ’dirichlet’;

J.scale = norm(u);

end

lbc = @(s) sqrt(-s/2)*(1+1/(8*s^3)-73/(128*s^6)+10657/(1024*s^9));

rbc = @(s) airy(s);

u0 = chebfun([lbc(d(1)),rbc(d(2))],d);

u = newton(@residual,@jacobian,u0,1e-14);

end

The truncation of the infinite domain to the finite interval [−30, 8] turns out to be
accurate to an absolute error of about 10−14. The initial guess u0 is just the linear
function satisfying the boundary conditions, so the Newton corrections only have
to satisfy a homogeneous form of them. As noted in Section 4, it is important
to construct the chebfuns for the Newton corrections with an accuracy relative
to the scale of the iterates. This is achieved by including the line J.scale =
norm(u) in the definition of the Jacobian. Eight iterations are sufficient to con-
verge to a correction size below the required tolerance of 10−14, taking about
1 second on a workstation. The solution is correct to about 13 digits, which
is considerably more accurate than the solution calculated by Dieng [8] using
Matlab’s bvp4c with a far more sophisticated initial iterate.
Once the boundary-value problem is solved, the chebfun system can easily
post-process u to yield the Tracy–Widom distribution F2(s) of random matrix
theory. This gives, in the large matrix limit, the probability that the rescaled
maximum eigenvalue of the Gaussian unitary ensemble is below s [18]:

F2(s) = exp
(
−

∫ ∞
s

∫ ∞
ξ

u(η)2dηdξ
)
.

>> v = sum(u.^2)-cumsum(u.^2);

>> F2 = exp(cumsum(v)-sum(v));

The mean value
∫
sdF2(s) can now be calculated by

>> [d,s] = domain(F2.ends);

>> sum(s.*diff(F2))

ans = -1.77108680741657

and this result is correct to 12 digits. For information on this problem, see [5].

7 Discussion.

The algorithms and software system we have described are extraordinarily con-
venient, at least in their basic setting of linear problems with smooth solutions.
They give users interactive access to one of the most powerful technologies for
high-accuracy solutions of differential equations, namely spectral collocation. On
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the other hand, one must be aware that as a rule, these methods come without
mathematical guarantees. The algorithms described in this article often converge
to the correct solutions as the grid is refined, but this need not happen always,
and so far as we know, there is no theory that readily identifies the dangerous
cases.
Quite different from this convergence issue is the matter of loss of digits in
spectral methods related to ill-conditioning of the associated matrices. A strat-
egy for avoiding this problem, put forward by Greengard in 1991, is to take the
highest order derivative of a variable as the basic unknown [7, 11, 13, 14]. For
example, in a second-order differential equation involving the variable u, one
can regard v = u′′ as the unknown and reformulate the differential equation in
integral form. This is a powerful idea, and in the chebop system such computa-
tions can be carried out with the use of the cumsum operator. Examples will be
considered in another publication.
The methods we have described are automatic but not adaptive. By this we
mean that grids are refined automatically to achieve a certain accuracy, but
the refinement is global. There are applications where one would wish for local
adaptivity, and we hope to investigate extensions of this kind in the future,
making use for example of the ideas of [17]. The current state of the art in
adaptive spectral methods, however, is not very advanced. Adaptivity has been
carried much further for finite difference and finite element methods, but these
are usually of lower accuracy.
A fundamental limitation of the chebfun and chebop systems is that they
work in one dimension. Of course, many problems in computational science are
formulated in two or three dimensions, and we are well aware that it would
extend the impact of our systems enormously if they could be extended to such
settings. This is a major challenge for the future.
Finally we mention a fundamental algorithmic and conceptual question. Fol-
lowing the custom in the field of spectral methods, the algorithms we have de-
scribed are based on square matrices. However, one might argue that since dif-
ferentiation lowers the degree of a polynomial, a spectral differentiation matrix
should have more columns than rows, and a spectral integration matrix should
have more rows than columns. This way of thinking opens up a path towards
making integration and differentiation more truly inverses of one another, and
the matter is more than philosophical because of the crucial matter of boundary
conditions and how they can be effectively imposed at the discrete level. We think
it is possible that a system like the one we have described should best be realized
via rectangular matrices, and we plan to investigate this idea in the future.
Chebfuns and chebops are freely available, together with users guides and
other materials, at http://www.comlab.ox.ac.uk/chebfun.
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