
CHEBFUN AND NUMERICAL QUADRATURE

NICHOLAS HALE∗ AND LLOYD N. TREFETHEN†

Abstract. Chebfun is a Matlab-based software system that overloads Matlab’s discrete op-
erations for vectors and matrices to analogous continuous operations for functions and operators.
We begin by describing Chebfun’s fast capabilities for Clenshaw–Curtis and also Gauss–Legendre,
–Jacobi, –Hermite, and –Laguerre quadrature, based on algorithms of Waldvogel and Glaser, Liu,
and Rokhlin. Then we consider how such methods can be applied to quadrature problems including
2D integrals over rectangles, fractional derivatives and integrals, functions defined on unbounded
intervals, and the fast computation of weights for barycentric interpolation.

Key words. Chebfun, Clenshaw–Curtis quadrature, Gauss quadrature, barycentric interpola-
tion formula, Riemann–Liouville integral, fractional calculus

AMS subject classifications. 65D32, 41A55

VERSION OF 14 FEBRUARY 2012

1. Introduction. One of the fundamental problems in numerical mathematics
is quadrature, the approximate evaluation of an integral such as

I =

∫ 1

−1
w(x)f(x)dx,(1.1)

where f is a continuous function on [−1, 1] and w is a weight function which we take
to be positive and continuous on (−1, 1), though perhaps approaching 0 or ∞ as
x → ±1. The starting point of almost every quadrature algorithm is the notion of an
(n + 1)-point quadrature formula,

In =
n

∑

k=0

wkf(sj),(1.2)

where s0, . . . , sn are a set of nodes in [−1, 1] and w0, . . . , wn are a set of weights.
The reason for using the parameter n for a quadrature formula of n + 1 points is that
usually, the weights {wk} are chosen according to the principle that the approximation
should be exact if f is a polynomial of degree at most n, i.e., In = I for f ∈ Pn.

Chebfun [22], which is an open-source software system built on Matlab, contains
implementations of what we believe are the best available algorithms for computing
many families of quadrature nodes and weights, particularly the algorithms of Wald-
vogel [23] and Glaser, Liu, and Rokhlin [7]. The purpose of this paper is twofold: first,
to call attention to these remarkable algorithms and their Chebfun implementations,
and second, to show how Gauss–Jacobi formulas in particular lead to very flexible
computation of integrals in the Chebfun environment, including an application to the
computation of fractional derivatives and integrals. Finally, following an observation
of Wang and Xiang at Central South University in China [24], we show how Chebfun
takes advantage of these methods to enable barycentric interpolation in Legendre and
related points even on grids of sizes in the millions.

∗Oxford University Mathematical Institute, 24–29 St Giles, Oxford OX1 3LB, UK,
hale@maths.ox.ac.uk. Supported by MathWorks, Inc. and by Award No. KUK-C1-013-04, made
by the King Abdullah University of Science and Technology.

†Oxford University Mathematical Institute, 24–29 St Giles, Oxford OX1 3LB, UK,
trefethen@maths.ox.ac.uk. Supported by the European Research Council.

1

2 N. HALE AND L. N. TREFETHEN

We set the stage with a quick illustration. The following Chebfun computation
computes three Gauss–Legendre quadrature nodes and the corresponding weights.
The name legpts comes from “Legendre points”, another term for Gauss–Legendre
quadrature nodes, since these nodes are the roots of the Legendre polynomial Pn+1.

>> [s,w] = legpts(3)
s =
-0.774596669241483

0
0.774596669241483

w =
0.555555555555556 0.888888888888889 0.555555555555556

If we change 3 to 10000, the same command computes nodes and weights for the 10000-
point Gauss–Legendre quadrature rule. Here is the time required for this computation
on a 2010 desktop machine:

>> tic, [s,w] = legpts(10000); toc
Elapsed time is 0.268227 seconds.

2. Gauss and Clenshaw–Curtis quadrature. As is well known and described
in many books, the nodes and weights for Gauss quadrature are determined by the
condition that the formula should have maximal polynomial order, namely I = In

whenever f is a polynomial of degree at most 2n + 1. If the weight function is a
constant, w(x) = 1, this is the case of Gauss–Legendre quadrature. An alternative
for w(x) = 1 is Clenshaw–Curtis quadrature, in which the nodes are the Chebyshev
points sj = cos(jπ/n) [3]. Here the polynomial order is only n, but as explained
in [13] and [19], this large difference in polynomial order often makes little difference
in practice.

Chebfun, which represents functions to machine precision by polynomial or piece-
wise polynomial interpolation in Chebyshev points, uses Clenshaw–Curtis quadrature
as its basic integration tool. The (n + 1)-point Clenshaw–Curtis quadrature approx-
imant In is readily computed in O(n log n) operations by converting the data to a
Chebyshev series and applying the Fast Fourier Transform (FFT) [6], and the con-
stant implicit in the “O” is very small. Alternatively, Chebfun enables one to compute
explicit Clenshaw–Curtis nodes and weights with the chebpts command, in analogy
to the example shown above:

>> [s,w] = chebpts(3)
s =
-1
0
1

w =
0.333333333333333 1.333333333333333 0.333333333333333

>> tic, [s,w] = chebpts(10000); toc
Elapsed time is 0.003027 seconds.

This fast computation makes use of a Chebfun implementation of an O(n log n) algo-
rithm published by Waldvogel [23], which determines the weights explicitly, again by
use of the FFT.

Note that although the Chebfun computation of Gauss–Legendre quadrature

CHEBFUN AND NUMERICAL QUADRATURE 3

nodes and weights is very fast, for Clenshaw–Curtis it is even faster. For smooth
functions at least, Clenshaw–Curtis quadrature is a powerful tool for any application.

Sometimes, however, one wants to work with Gauss formulas, with their optimal
order of polynomial accuracy. Here there are several familiar choices for the weight
function in (1.1):

Gauss–Legendre: w(x) = 1,

Gauss–Chebyshev: w(x) = (1 − x2)−1/2,

Gauss–Jacobi: w(x) = (1 − x)α(1 + x)β , α, β > −1.

Both Gauss–Legendre and Gauss–Chebyshev are special cases of Gauss–Jacobi. In
Chebfun, Gauss–Jacobi nodes and weights are available through the command jacpts.
Chebyshev, Legendre, and Jacobi polynomials are also available through chebpoly,
legpoly, and jacpoly. There are analogous commands for Gauss–Hermite quadra-
ture on (−∞,∞) and Gauss–Laguerre quadrature on [0,∞), as summarized in Ta-
ble 2.1.

Table 2.1

Orthogonal polynomial and Gauss quadrature capabilities in Chebfun. The domains listed
are defaults, which are automatically scaled to other intervals such as [a, b] as appropriate.

Weight Orthogonal Nodes
Name Domain function w(x) polynomials and weights

Legendre [−1, 1] 1 legpoly legpts

Chebyshev [−1, 1] (1 − x2)−1/2 chebpoly chebpts

Jacobi [−1, 1] (1 − x)α(1 + x)β jacpoly jacpts

Hermite (−∞,∞) exp(−x2/2) hermpoly hermpts

Laguerre [0,∞) exp(−x) lagpoly lagpts

3. Golub–Welsch and Glasier–Liu–Rokhlin algorithms. A famous algo-
rithm for computing Gauss quadrature nodes and weights was introduced by Golub
and Welsch (GW) in 1969 [8]. This algorithm reduces the problem to a real symmet-
ric tridiagonal eigenvalue problem, which can be solved in principle in O(n2) time.
Thanks to the powerful and numerically stable algorithms that have been developed
for calculating matrix eigenvalues, this leads to an accurate and effective way of com-
puting quadrature nodes and weights that has been the standard for two generations.
An unfortunate feature is that Matlab’s black-box eigenvalue solver does not take
advantage of the tridiagonal structure, so the operation count worsens from O(n2) to
O(n3).

Whether O(n2) or O(n3), the operation count of the GW algorithm is too high
for this method to be effective when n is in the thousands or higher. For many
applications this hardly matters, since often one does not need a high-order Gauss
formula, but it imposes an unfortunate limit on our numerical explorations, espe-
cially when one considers that Clenshaw–Curtis formulas are applicable in O(n log n)
time. Consequently it was a striking advance when Glaser, Liu, and Rokhlin (GLR)
introduced an algorithm that computes Gauss quadrature nodes and weights in O(n)
operations [7]. The GLR algorithm calculates the nodes and weights one at a time,
hopping from each node to the next by an ingenious method involving a 30-term
Taylor series and a few steps of Newton iteration. The work is just O(1) operations

4 N. HALE AND L. N. TREFETHEN

101 102 103 104 105 106
10−4

10−3

10−2

10−1

100

101

Gauss:
Glaser−Liu−

Rokhlin

Gauss:
Golub−Welsch

(Matlab)

degree n

tim
e

(s
)

Clenshaw−Curtis:
Waldvogel

Fig. 3.1. Comparison of Chebfun timings for computation of Gauss–Legendre nodes and
weights by the Glaser–Liu–Rokhlin and Golub–Welsch algorithms. The third curve shows
that computing Clenshaw–Curtis nodes and weights, by the algorithm of Waldvogel, is even
faster.

per node, and that is why the overall operation count is O(n). This speed is rather
startling when one considers that merely evaluating a Legendre polynomial at a point
requires O(n) operations.

Chebfun contains implementations of the GLR algorithm for all the classes of
polynomials listed in Table 2.1, whose uniformly high efficiency is summarized by
the following experiment, which arbitrarily takes parameters α = 2 and β = 3 for
Gauss–Jacobi.

>> tic
>> [s,w] = legpts(1000);
>> [s,w] = chebpts(1000);
>> [s,w] = jacpts(1000,2,3);
>> [s,w] = hermpts(1000);
>> [s,w] = lagpts(1000);
>> toc

Elapsed time is 0.598015 seconds.

For the basic case of Gauss–Legendre quadrature, Figure 3.1 shows Chebfun tim-
ings for the GLR and Matlab GW algorithms as a function of n. (Chebfun’s default
for larger values of n is to use the GLR algorithm, but GW is available by setting a
flag.) It is clear that GW becomes impractical once n is in the thousands, whereas
GLR can be used even for n in the millions. The plot also shows data for Clenshaw–
Curtis nodes and weights, a reminder that this problem remains simpler than Gauss
quadrature.

4. Chebfun quadrature for smooth functions. The aim of Chebfun is to
compute with functions of a real variable in a manner that has “the feel of symbolics
but the speed of numerics.” For smooth functions, this is achieved by representing

CHEBFUN AND NUMERICAL QUADRATURE 5

−1 −0.5 0 0.5 1
−2

−1

0

1

2

Fig. 4.1. An example of a smooth chebfun represented by a single global polynomial
interpolant through Chebyshev points. The function is f(x) = ex sin(3x) tanh(5 cos(30x)),
and the polynomial is of degree 3209.

functions by polynomial and piecewise polynomial interpolants, and by overloading
familiar Matlab commands for discrete vectors to their natural analogues for functions.
For example, consider the function

f(x) = ex sin(3x) tanh(5 cos(30x))

defined on the interval [−1, 1]. The following commands construct a chebfun of f and
produce the plot shown in Figure 4.1:

>> x = chebfun(’x’);
>> f = exp(x).*sin(3*x).*tanh(5*cos(30*x));
>> plot(f)

The Chebfun representation consists of a global polynomial of degree 3209, an inter-
polant through 3210 Chebyshev points, and this degree has been determined adap-
tively to achieve approximately machine precision.

>> length(f)
ans = 3210

For details of the underlying approximation theory, see [21]. Once the chebfun has
been constructed, all kinds of operations can be performed, each relying on a Chebfun
implementation of an appropriate numerical algorithm, typically at high speed with
accuracy close to machine precision. For example, the maximum of f is computed by
differentiating f , finding the roots of f ′, and evaluating f at those roots:

>> max(f)
ans = 1.782604429158422

Computing the 2-norm of f , defined as the square root of the integral of |f(x)|2,
entails the computation of an integral by Clenshaw–Curtis quadrature:

>> norm(f)
ans = 1.250542878304186

Chebfun integrals arise in other contexts too. For example, the sum command deter-
mines the integral over the domain of definition:

6 N. HALE AND L. N. TREFETHEN

0 1 2 3 4
0

1

2

3

−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 5.1. Chebfun is at heart a one-dimensional tool, but it can be applied to quadrature
over a rectangle by taking a product. The example integrand plotted here is f(x, y) = sin(5x+
2y) + sin(x2 + y3).

>> sum(f)
ans = -0.017790593076879

The transpose symbol ’ is used in the usual Matlab fashion to signal the computation
of an inner product, the continuous analogue of a vector inner product, again realized
via an integral evaluated by Clenshaw–Curtis quadrature:

>> f’*exp(f)
ans = 2.149796850732142

Calculations like these happen in milliseconds, and the results are typically accu-
rate in all but perhaps the final digit. Comparisons between Chebfun and specialized
adaptive quadrature routines have indicated that Chebfun is generally as reliable and
accurate as specialized software and runs at a comparable speed, being slower by a
factor in the range 1–10 [1, 10]. In [1] it was noted that a particularly impressive
competitor in such comparisons was the code coteda by Espelid [4], a precursor of
Espelid’s higher-order code da2glob [5]. A difference between Chebfun and the usual
approach to adaptive quadrature is that Chebfun attempts adaptively to resolve the
function itself before integrating it, whereas most quadrature algorithms adapt on the
integral rather than the function. This difference is the basic reason why Chebfun
tends to lie at the high-reliability, low-speed end of the range. Gonnet, however, has
recommended adaptive quadrature based on resolving the function rather than the
interval, and his algorithms presented in [9] share Chebfun’s characteristics of high
reliability at some cost in speed. Algorithm 3 of [9] has subsequently been developed
into the code quadcc in Octave as of version 3.4 [12].

5. Chebfun quadrature over a rectangle. We like to think that Chebfun can
do “almost anything in one dimension.” It is a longstanding ambition of the Chebfun
team to move to two or three dimensions, but so far, this project lies mainly in the
future.

For the specific problem of quadrature over a rectangle, however, one can use a

CHEBFUN AND NUMERICAL QUADRATURE 7

product of two copies of any 1D quadrature method to get results. In particular,
Chebfun can be used in this way, and the result are often quite reasonable, especially
for smooth functions.

For example, Figure 5.1 shows a contour plot of the function

f(x, y) = sin(5x + 2y) + sin(x2 + y3)

over the rectangle 0 ≤ x ≤ 4, 0 ≤ y ≤ 3. The integral of f over this region can be
computed by Chebfun with the following commands:

>> tic, f = @(x,y) sin(5*x+2*y)+sin(x.^2+y.^3);
>> Iy = @(y) sum(chebfun(@(x) f(x,y),x([1 end])));
>> I = sum(chebfun(@(y) Iy(y),y([1 end]),’vectorize’)), toc
I = 0.862836879410888
Elapsed time is 0.814382 seconds.

This result is probably accurate in all but perhaps the final digit, since it agrees with
the following computation by Matlab’s dblquad:

>> tic, I = dblquad(f,0,4,0,3,1e-11,@quadl), toc
I = 0.862836879410889
Elapsed time is 24.46229 seconds.

In this example DBLQUAD appears much slower than tensor product Chebfun, but
we make no claims about Chebfun performance for 2D integrals in general. The
conclusion reached in [1], based on a collection of computations of this kind, was that
Chebfun is typically about 15 times slower for integrals over rectangles than a tensor
product of integrations by the routine coteda.

6. Chebfun quadrature for functions with endpoint singularities. Cheb-
fun’s representation of functions is actually more general than has been indicated so
far in this paper. Chebfun can also work with functions with algebraic endpoint or
interior algebraic singularities, which it treats by representing a function by a con-
catenation of pieces of the form (x − a)α(b − x)βp(x), where p is a polynomial and α
and β may be be negative or positive, fractional or integer. These methods originate
with the contribution of Richardson [15], and the exponents α and β can be specified
by the user or determined automatically. Once found, exponents are adjusted in the
appropriate way in further computations. For example, if the chebfun representing a
function f has a singularity with an exponent α at some point, then the command
sqrt(f) produces a chebfun with an exponent α/2 at the same point.

This is where more specialized quadrature formulas come into the calculation.
To integrate one of the functions just described, which may have point singularities
involving arbitrary exponents, the mathematically ideal tool is Gauss–Jacobi quadra-
ture, with parameters α and β chosen in accordance with the singularities at one or
both ends of each subinterval. This is exactly the tool used by Chebfun, with nodes
and weights computed on the fly by the GLR algorithm. The result is great accuracy
and flexibility in computing integrals. For example, here we make a chebfun of the
gamma function Γ(x) on [−4.5, 4.5], plotted in Figure 6.1a. Chebfun automatically
determines that there are simple poles at −4,−3,−2,−1, 0 and splits the domain into
six pieces.

>> g = chebfun(@gamma,[-4.5,4.5],’blowup’,’on’,’splitting’,’on’);

8 N. HALE AND L. N. TREFETHEN

−4 −3 −2 −1 0 1 2 3 4
−10

−5

0

5

10
f(x) = Γ(x) sum(f) = NaN

−4 −3 −2 −1 0 1 2 3 4
0

2

4

6

8

f(x) = |Γ(x)|0.5 sum(f) = 15.757

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

f(x) = |Γ(x)|−0.5 sum(f) = 7.856

Fig. 6.1. Chebfun represents functions with point singularities in a piecewise fashion,
where each piece consists of a product of a Chebyshev interpolant and singular terms at one
or both ends. Integrals of such functions are then computed by Gauss–Jacobi quadrature with
appropriate exponents.

If Chebfun is asked to compute the integral, it adds up the integrals from each of
the six pieces. Three of the contributions are +∞ and three are −∞, so the result is
Not-a-Number:

>> sum(g)
ans = NaN

If Γ(x) is replaced by |Γ(x)|, all six pieces agree in sign, and we get infinity:

>> absg = abs(g);
>> sum(absg)
ans = Inf

True numerical results appear as soon as one weakens the singularities, so that the
integrand becomes integrable:

>> sum(absg.^-.5)
ans = 7.855535000849889

>> sum(absg.^.5)
ans = 15.756773863531844

>> sum(absg.^.99)
ans = 5.511556606477695e+02

>> sum(absg.^.9999)
ans = 5.417630420657751e+04

To obtain these numbers, Chebfun has silently adjusted the exponents and then ap-

CHEBFUN AND NUMERICAL QUADRATURE 9

0 π 2π 3π 4π

−1

0

1

Fig. 7.1. The function sin x on [0, 4π] together with its derivatives of fractional orders
0.1, 0.2, . . . , 1. These computations rely on Chebfun’s Gauss–Jacobi quadrature operations for
sampling functions defined by the integral (6.1).

plied the corresponding Gauss–Jacobi formulas. Chebfuns for |Γ(x)|1/2 and |Γ(x)|−1/2

are also plotted in Figure 6.1.

7. Fractional derivatives and integrals. An established idea of analysis is
the notion of fractional calculus, the study of derivatives and integrals of fractional
rather than integral order. Suppose, for example, that u is a continuous function
defined on an interval [a, b], and consider the Riemann–Liouville integral

I(ν)u(x) =
1

Γ(ν)

∫ x

a
(x − s)ν−1u(s)ds.(7.1)

If ν is an integer, (7.1) gives the ν th indefinite integral of u, and one may take the
same formula as a definition of a ν th-order fractional integral for arbitrary ν > 0.
By differentiating the result one or more times, we may extend the same definitions
to fractional differentiation operators. There is also an alternative notion of the frac-
tional derivative, due to Caputo, in which one differentiates first and then integrates.
Ideas like this have far-reaching generalizations which are described in various places
including [14] and [17].

The integrand of (7.1) has a singularity of type xν−1, which makes it a perfect
candidate for evaluation by Chebfun’s Gauss–Jacobi quadrature capabilities as de-
scribed in the last section. In Chebfun, the diff command computes derivatives, an
overload of Matlab’s diff for finite differences. If one specifies a non-integer order to
diff, Chebfun applies (7.1) (or a Caputo alternative if the flag ’caputo’ is given)
to compute the fractional derivative. The same fractional-order functionality is also
accessible through the indefinite integral command cumsum.

Figure 7.1 illustrates fractional differentiation by ploting sinx on the interval
[0, 4π] together with its derivatives of orders α = 0.1, 0.2, . . . , 1. Each curve is approx-
imately a translation of sinx by a distance πα/2 to the left, but these translations
are only approximate because of effects of the boundary at x = 0. Unlike integer-
order differentiation and (up to constants) integer-order integration, fractional-order
differentiation and integration are non-local operations.

We should say a word to clarify the Chebfun computations involved in imple-
menting these operations of fractional calculus. To evaluate (7.1) at a single point x,

10 N. HALE AND L. N. TREFETHEN

the system constructs a chebfun with an appropriate singularity at one end and then
integrates it by Gauss–Jacobi quadrature. Producing results like those of Figure 7.1,
however, requires the computation of new chebfuns representing (7.1) as a function
of x. This is done by first fixing the singularity appropriately, then constructing a
chebfun adaptively in the standard fashion by sampling the function on finer and finer
grids until convergence to 15 or 16 digits is achieved.

Although nothing mathematically deep is going on here, computations like these
would be sufficiently complicated without Chebfun that it is rare to see a figure
like Figure 7.1 in which numerically evaluated fractional derivatives or integrals are
plotted. Indeed, we do not know of any such figures in the literature. This suggests
that Chebfun offers entirely new possibilities for practical explorations of fractional
integrals and derivatives.

8. Functions defined on unbounded intervals. Chebfun also contains algo-
rithms for representing functions, and integrating them, on unbounded integrals of
the form [a,∞), (−∞, b], or (−∞,∞). These were implemented by Rodrigo Platte
around 2008, and like the other features described here, they have not been presented
in published form before. Chebfun treats unbounded intervals by applying nonlinear
changes of variables to reduce them to [−1, 1]. The software makes it possible to uti-
lize quite arbitrary maps, but by default, the maps are rational functions of the form
(cx + d)/(ex + f). In practice, functions can be represented so long as they approach
zero, or a constant, at a reasonably rapid rate as x approaches the infinite limits.

This leads to a quite efficient Chebfun capability for quadrature on infinite inter-
vals, ultimately achieved by applying Chebfun’s standard methods to the transplant
on [−1, 1]. For example, here is the integral of e−x from 0 to ∞:

>> f = chebfun(’exp(-x)’,[0,inf]);
>> length(f)
ans = 41
>> sum(f)
ans = 1.000000000000000

Here is the result for the more complicated function e−x sin(100x):

>> f = chebfun(’sin(100*x).*exp(-x)’,[0,inf]);
>> length(f)
ans = 6403
>> sum(f)
ans = 0.009999000099987

9. Barycentric nodes and weights. In this final section we describe Chebfun’s
capabilities for computing barycentric interpolation weights associated with Legendre
or more generally Gauss–Jacobi points quickly even for large n, based on the GLR
algorithm and an observation of Wang and Xiang [24].

Suppose s0, . . . , sn are a set of n+1 distinct points, and f0, . . . , fn are a set of data
given at these points. Then it is well known that the unique polynomial interpolant
of degree at most ≤ n through these data is given by the barycentric interpolation
formula [2, 21]:

p(x) =
n

∑

j=0

vjfj

x − sj

/

n
∑

j=0

vj

x − sj
,(9.1)

CHEBFUN AND NUMERICAL QUADRATURE 11

with the special case p(x) = fj if x = sj for some j, where the barycentric weights
{vj} are defined by

vj =
C

∏

k #=j(sj − sk)
,(9.2)

and the constant C can be chosen arbitrarily since it cancels in the numerator and
denominator of (9.1). An equivalent formula is

vj =
C

%′(sj)
,(9.3)

where % is the node polynomial

%(x) =
n

∏

j=0

(x − sj)(9.4)

[21, Chap. 5]. The formula (9.1) is not just mathematically correct, but the basis
of a fast and numerically stable numerical algorithm, at least when the interpolation
points are distributed with suitable clustering near ±1, as proved by Higham [11].

If {sj} are Chebyshev points, then (9.2) reduces to a simple form involving
barycentric weights ±1 of alternating sign, or ±1/2 for j = 0 and n [16]. If {sj}
are Legendre or more generally Gauss–Jacobi points, on the other hand, no simple
formula for the barycentric weights is known. However, Wang and Xiang have ob-
served that they are related to the quadrature weights as follows [24, Thm. 3.1]:

vj = (−1)j
√

(1 − s2
j)wj .(9.5)

One can derive this formula from (9.3) and the fact that the quadrature weights for
the Gauss–Jacobi formula with parameters α, β are given by

wj =
C(α,β)

(1 − s2
j)[%

′(sj)]2
(9.6)

[18, eq. (15.3.1)], [25], where C(α,β) is a constant. Chebfun uses these results to
compute quadrature weights {wj} and barycentric weights {vj} as follows. First, the
GLR algorithm returns derivatives %′(sj) at the quadrature nodes in O(n) operations.
The weights are then computed from (9.3) and (9.6). Thus we immediately get an
O(n) algorithm for barycentric interpolation in Legendre or Gauss–Jacobi points.
Chebfun returns both sets of weights when legpts or jacpts is invoked with an
additional argument, like this:

>> [s,w,v] = legpts(3)
s =
-0.774596669241483

0
0.774596669241483

w =
0.555555555555556 0.888888888888889 0.555555555555556

v =
0.500000000000000

-1.000000000000000
0.500000000000000

12 N. HALE AND L. N. TREFETHEN

Increasing 3 to 10000, as in the opening example of this paper, gives barycentric
weights with no additional computing time.

>> tic, [s,w,v] = legpts(10000); toc
Elapsed time is 0.263366 seconds.

Suppose, for example, one wished to evaluate at x = 0 the polynomial interpolant
in 10000 Legendre points to f(x) = (1+1000x2)−1. One could proceed like this, using
Chebfun’s bary command with explicit third and fourth arguments for barycentric
nodes and weights:

>> f = 1./(1+1000*s.^2);
>> p0 = bary(0,f,s,v)
p0 = 0.999999999999998

This is very close to the correct answer, which would match the value 1 to many more
than 16 digits of precision. Chebfun also generalizes these computations to barycentric
interpolation by Hermite and Laguerre polynomials (hermpts, lagpts), for which it
is possible to show a similar relation between the quadrature weights {wj} and the
node polynomial %′(sj).

REFERENCES

[1] P. Assheton, Comparing Chebfun to Adaptive Quadrature Software, thesis, MSc in Mathematical
Modelling and Scientific Computing, Oxford University, 2008.

[2] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev. 46 (2004),
501–517.

[3] C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer,
Numer. Math. 2 (1960), 197–205.

[4] T. O. Espelid, Doubly adaptive quadrature routines based on Newton–Cotes rules, BIT Numer.
Math. 43 (2003), 319–337.

[5] T. O. Espelid, Extended doubly adaptive quadrature routines, Tech. Rep. 266, Dept. of Infor-
matics, U. of Bergen.

[6] W. M. Gentleman, Implementing Clenshaw–Curtis quadrature I and II, J. ACM 15 (1972), 337–
346.

[7] A. Glaser, X. Liu and V. Rokhlin, A fast algorithm for the calculation of the roots of special
functions, SIAM J. Sci. Comp. 29 (2007), 1420–1438.

[8] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969),
221–230.

[9] P. Gonnet, Increasing the reliability of adaptive quadrature using explicit interpolants, ACM
Trans. Math. Softw. 37 (2010), 26:2–26:32.

[10] P. Gonnet, Battery test of Chebfun as an integrator, http://www.maths.ox.ac.uk/chebfun/
examples/quad, 2010.

[11] N. J. Higham, The numerical stability of barycentric Lagrange interpolation, IMA J. Numer.
Anal. 24 (2004), 547–556.

[12] Octave software, http://www.octave.org/.
[13] H. O’Hara and F. J. Smith, Error estimation in the Clenshaw–Curtis quadrature formula, Com-

put. J. 11 (1968), 213–219.
[14] K. B. Oldham and J. Spanier, The Fractional Calculus: Integrations and Differentiations of

Arbitrary Order, Academic Press, 1974.
[15] M. Richardson, Approximating Divergent Functions in the Chebfun System, thesis, MSc in

Mathematical Modelling and Scientific Computing, Oxford University, 2009.
[16] H. E. Salzer, Lagrangian interpolation at the Chebyshev points xn,ν = cos(νπ/n), ν = 0(1)n;

some unnoted advantages, Computer J. 15 (1972), 156–159.
[17] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon

and Breach, 1993.
[18] G. Szegő, Orthogonal Polynomials, Amer. Math. Soc., 1939.

CHEBFUN AND NUMERICAL QUADRATURE 13

[19] L. N. Trefethen, Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50 (2008),
67–87.

[20] L. N. Trefethen, Six myths of polynomial interpolation and quadrature, Maths. Today 47 (2011),
184–188.

[21] L. N. Trefethen, Approximation Theory and Approximation Practice, SIAM, to appear in 2013.
[22] L. N. Trefethen and others, Chebfun Version 4.0, 2011, http://www.maths.ox.ac.uk/chebfun/.
[23] J. Waldvogel, Fast construction of the Fejér and Clenshaw–Curtis quadrature rules, BIT Numer.

Math. 46 (2006), 195–202.
[24] H. Wang and S. Xiang, On the convergence rates of Legendre approximation, Math. Comp. 81

(2012), 861–877.
[25] C. Winston, On mechanical quadratures formulae involving the classical orthogonal polynomials,

Ann. Math. 35 (1934), 658–677.

