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Summary. The functionalities of the chebfun and chebop systems are surveyed.
The chebfun system is a collection of Matlab codes to manipulate functions in
a manner that resambles symbolic computing. The operations, however, are per-
formed numerically using polynomial representations. Chebops are built with the
aid of chebfuns to represent linear operators and allow chebfun solutions of differ-
ential equations. In this article we present examples to illustrate the simplicity and
effectiveness of the software. Among other problems, we consider edge detection in
logistic map functions and the solution of linear and nonlinear differential equations.

1 Introduction

For a long time there have been two kinds of mathematical computation: sym-
bolic and numerical. Symbolic computing manipulates algebraic expressions
exactly, but it is unworkable for many applications since the space and time
requirements tend to grow combinatorially. Numerical computing avoids the
combinatorial explosion by rounding to 16 digits at each step, but it works
just with individual numbers, not algebraic expressions.

The chebfun system introduced in 2004 by Battles and Trefethen [1] aims
to combine the feel of symbolics with the speed of numerics. The idea is
to represent functions by Chebyshev expansions whose length is determined
adaptively to maintain an accuracy of close to machine precision. The system
has been significantly extended since its introduction. Among other develop-
ments, it now handles piecewise smooth functions on arbitrary intervals [12]
and linear operators [6]. The latter extension was made possible by T. A.
Driscoll who implemented the chebop class. In this article, we review the
main features of the software and demonstrate its effectiveness through many
examples, including solution of differential equations.

The chebfun system is implemented in object-oriented Matlab. One of
the guiding principles in its design is the analogy of commands available for
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vectors and those implemented in the chebfun package for functions. Once a
chebfun object has been created, commands like diff, sum and norm can be
used to compute its derivative, definite integral, and norm, respectively.

The simplicity of its use is illustrated in the following example, where the
number of roots, maximum and L1-norm of the function f(x) = J0(x) sin x
are computed in the interval [0, 100].

>> f = chebfun(@(x) besselj(0,x).*sin(x), [0 100]);

>> length(roots(f))

ans = 64

>> max(f)

ans = 0.644562281456927

>> norm(f,1)

ans = 6.295294435933753

Similarly, the chebop extension to linear operators relies on underlying
polynomial-based spectral methods. The analogy here, to some extent, is be-
tween linear operators and matrices. With chebops, commands such as diff
and sum are used to define differential and integral operators, while “*” and
“\” are used to apply operators in forward and inverse modes. The following
commands, for example, can be used to differentiate f(x) = sin(x) in [−π, π]
using chebop notation.

[d,x] = domain([-pi,pi]);

D = diff(d);

df = D*sin(x);

One of the main strengths of chebops is how simple the syntax is for solving
differential equations. To solve the boundary value problem

u′′(x) + u′(x) + u(x) = sin(x), x ∈ (−π, π), u(±π) = 0,

for instance, one only needs to define the operator and appropriate boundary
conditions and type \,

L = D^2 + D + eye(d) & ’dirichlet’;

sol = L\sin(x);

This article is organized in two main sections. In Section 2 we review basic
aspects of the chebfun system, including piecewise polynomial representations
and apply the chebfun edge detector to locate break points of piecewise con-
stant functions that are limits of logistic map sequences. In Section 3 we briefly
describe the syntax of the chebop system and give examples to illustrate how
simple and effective it is.
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2 Chebfuns

In this section we give some insight into the underlying theory and imple-
mentation of the system. More detailed information can be found in [1] and
[17].

2.1 Funs: smooth representations on [−1, 1]

The original chebfun class implemented by Battles in 2004 for smooth func-
tions on [−1, 1] is now called fun. A chebfun object consists of one or more
funs. Each smooth piece is mapped to the interval [−1, 1] and represented by
an expansion in Chebyshev polynomials of the form

fN(x) =

N
∑

j=0

λjTj(x), x ∈ [−1, 1], (1)

where Tj(x) = cos(j arccos(x)). When constructing a fun object, the system
computes the coefficients λj by interpolating the target function f at N + 1
Chebyshev extreme points,

xj = cos
πj

N
, j = 0, . . . , N.

The polynomial degree N is automatically determined so that the represen-
tation is as accurate as possible in double precision arithmetic.

Polynomial interpolation in Chebyshev nodes is known to be near-optimal
for approximating functions that are smooth, converging geometrically for
analytic functions [1]. Fast Fourier transforms (FFTs) can be used to map
function values f(xj) to coefficients λj , and vice versa, in O(N log N) opera-
tions. Figure 1 presents the polynomial representation of the Bessel function
J0 and its corresponding Chebyshev coefficients. The construction process be-
gins by sampling the target function at 2n + 1 points, with n = 3, 4, . . . . The
optimal degree N is then determined such that |λj | is close to zero, relative
to the coefficient of largest magnitude, for all j > N .

The left graph of Figure 1 was obtained with the following commands:

f = chebfun(@(x) besselj(0,x),[0 100]); plot(f,’.-’)

and the coefficients were plotted using

c = chebpoly(f); semilogy(flipud(abs(c)),’.’)

The execution of the first command constructs the chebfun object from an
anonymous function evaluated in the specified interval. Once a chebfun object
has been created, there are a number of methods that can be used to operate
on it. The list of methods can be obtained by typing methods chebfun. The
syntax is, in most cases, the same as the usual Matlab calls for vectors. The
integral of f from 0 to 100, for instance, is obtained with the command sum.
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Fig. 1. Left: Chebfun representation by a polynomial of degree 88 of the Bessel
function J0 on the interval [0, 100]. The dots mark the 89 Chebyshev interpola-
tion points. Right: semilog plot of the magnitude of the corresponding Chebyshev
coefficients.

>> sum(f)

ans = 0.922662556960163

All digits in this answer are correct except the last one. Integrals are computed
efficiently by Clenshaw-Curtis quadrature in O(N) operations once the coef-
ficients are obtained with the aid of the FFT. Similarly, cumsum(f) returns
the indefinite integral of the chebfun f.

Rootfinding plays a key role in the chebfun system. The method we use
makes use of a recursion proposed by Boyd [4]. The main idea behind this
approach is that the roots of a polynomial of the form (1) are the eigenvalues
of an N ×N colleague matrix [8]. To avoid the cubic growth of the number of
operations required by eigenvalue computations, the algorithm uses recursive
subdivision of intervals to bring the degree of the polynomial representation
to at most 100, improving the overall operation count to O(N2).

Here is an example where rootfinding is used to obtain all local maxima
of f.

df = diff(f);

xcrit = roots(df);

ddf = diff(df);

xmax = xcrit(ddf(xcrit)<0);

plot(f), hold on, plot(xmax,f(xmax),’o’)

The result is displayed in Fig. 2. Also shown in this figure is the global
minimum, which is computed in a similar way with just one function call:
[ymin, xmin] = min(f); plot(xmin,ymin,’*’).

The evaluation of a chebfun at arbitrary points is carried out using the
barycentric formula introduced by Salzer [3, 13]. The formula has been proved
to be stable by Higham in [9] and requires O(MN) operations to evaluate a
chebfun at M points. The plot command, for instance, relies on evaluations
at thousands of points.
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Fig. 2. Local maxima (◦) and global minimum (∗) of J0 in [0,100].

2.2 Piecewise representations

The chebfun system also handles piecewise smooth functions [12]. Piecewise
representations can result from certain operations on smooth functions such
as

abs, sign, floor, ceil, round, fix, min, max

among others. They may also be defined using the chebfun constructor. In the
construction precess, each smooth piece may be explicitly defined or obtained
through an edge detection procedure.

The main components of a chebfun with several pieces are the endpoints
of the interval, the breakpoints, and the corresponding funs, which are objects
representing each smooth piece. When breakpoints are introduced by oper-
ations on chebfuns, they are, in most cases, obtained by rootfinding. In the
following code segment, for instance,

>> x = chebfun(@(x) x);

>> f = sin(4*x.^2).*floor(1.5*sin(5*x));

>> norm(f,1)

ans = 0.936713707137759

zerofinding is used twice. To find the breakpoints of the piecewise constant
chebfun floor(1.5*sin(5*x)), the system finds all values of x that satisfy
1.5 sin(5x) − n = 0 for n = −1, 0, 1. To compute the L1 norm of f , it first
obtains a piecewise representation of |f |, which also requires rootfinding.

Chebfun also comes with an efficient edge detector, since in many situa-
tions, one may want to construct a representation from samples of a function.
To this end, the constructor works in two splitting modes that may be selected
by the user: splitting on and splitting off — the current default is on.
The following example illustrates the edge detector in action:

splitting on
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f = chebfun(@(x) x.^2.*round(cos(x.^3)),[-2 3]);

plot(f)

The result is shown in Fig. 3. The breakpoints are stored in the field f.ends.
The edge detection algorithm uses bisection and finite differences to locate
jumps in function values accurately to machine precision, as well as jumps in
first, second and third derivatives [12].

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

x

y

Fig. 3. Plot of the chebfun corresponding to f(x) = x2 round(cos x3).

In splitting off mode, the system disables the splitting algorithm. This
mode is recommended when the target functions are smooth since in such cases
manipulating global approximations is often more efficient. Most operations
in the chebop system are restricted to this mode.

The logistic map

Simple examples of piecewise smooth functions arise throughout applied math-
ematics and are easily manipulated in the chebfun system. For one set of
examples, see the online chebfun guide [18]. Here, we shall push the system
harder with a more challenging example. Many chebfun computations finish
in a fraction of a second; the results we shall show have taken minutes.

We use the logistic map to illustrate some strengths and limitations of
piecewise polynomial representations. The map is given by the recurrence
formula

xk+1 = rxk(1 − xk), (2)

with xk ∈ [0, 1] and r ∈ [0, 4], and is often used to model simple population
dynamics and to illustrate key properties of dynamical systems such as chaos.
The bifurcation diagram for the logistic map is shown in Fig 4.

Suppose we are interested in representing the map functions, gk
r : x0 7→ xk,

and studying their convergence. For r = 4, it is possible to derive a simple
polynomial representation [14],
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Fig. 4. The famous bifurcation diagram for the logistic map, showing period dou-
bling as a route to chaos.

gk
4 (x0) =

1 − cos(2k arccos(1 − 2x0))

2
,

but in general, nonrecursive expressions are not available. The maps gk
r are

polynomials of order 2k, but their chebfun representations often have smaller
degrees. For 1 < r < 3, the functions gk

r converge to a constant, 1 − 1/r, if
we exclude the singular endpoints: x = 0 and x = 1 . Here are the degrees of
chebfuns for gk

2.5:

>> xk = chebfun(@(x) x, [0.001 .999]);

>> for k = 1:51

xk = 2.5*xk.*(1-xk); deg(k) = length(xk)-1;

end

>> deg

deg =

Columns 1 through 9

2 4 8 16 32 64 112 178 284

Columns 10 through 18

434 574 544 554 522 522 522 496 488

Columns 19 through 27

488 474 470 390 390 388 388 354 352

Columns 28 through 36

352 352 338 330 330 258 258 256 256

Columns 37 through 45

158 158 158 158 158 106 106 106 106

Columns 46 through 51

106 72 72 0 0 0

Despite the initial exponential growth in degree, the length of the chebfuns
reaches a maximum of 574, and for k ≥ 49, the chebfun representations of gk

2.5
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are constant functions with the correct value 0.6. In the exact arithmetic of
symbolic computing, for k = 49 the degree would be 562,949,953,421,312.

It is also interesting to look at the convergence of these functions in the
two-cycle region, 3 < r < 3.44 . . . , where the subsequences {g2k−1

r } and {g2k
r }

converge to piecewise constant functions. With the aid of the chebfun auto-
matic edge detection algorithm, we can represent these limiting functions and
compute the rates for convergence as follows for r = 3.2:

g1000 = chebfun(@(x) logistic(3.2,1000,x), [0 0.5]);

xk = chebfun(@(x) x, domain(g1000));

delta = zeros(40,1);

for k = 1:80

xk = 3.2*xk.*(1-xk);

if mod(k,2)==0, delta(k/2) = norm(xk-g1000); end

end

plot(g1000), figure, semilogy(delta,’.’)

The result is shown in Figure 5 together with the graphs of g2
3.2 and g4

3.2. The
first line of the execution above requires the function logistic.m:

function x = logistic(r,n,x)

for k=1:n, x = r*x.*(1-x); end

Notice that the functions gk
r are symmetric about x = 0.5, so in the ex-

ample above we only considered the interval [0, .5]. The subsequences {g2k−1
r }

and {g2k
r } cannot converge uniformly because of the jumps in the limit. In the

(default) L2-norm, on the other hand, they converge very fast. The right plot
in Fig. 5 indicates exponential convergence. We point out that the chebfun
representation of g1000

3.2 has 31 break points, most of them near x = 0, with
the spaces between them decaying exponentially.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x0

g
k 3
.2

(x
0
)

5 10 15 20 25 30 35 40

10
−4

10
−3

10
−2

10
−1

k

‖
g
1
0
0
0

3
.2

−
g
2
k

3
.2
‖
2

Fig. 5. Left: piecewise chebfun representation of gk
3.2, k = 2, 4 and 1000. Right:

convergence plot of g2k
3.2 in the L2-norm.

A similar cascade of break points can be observed in the 4-cycle region.
In fact, as the parameter r is increased, the number of jump locations also
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increases. Figure 6 shows the chebfun representation for r = 3.5 and k = 1000,
g1000 = chebfun(@(x) logistic(3.5,1000,x), [0.001 0.999]). Notice
that now there are several clusters of break points. A detailed plot of g1000

3.5

around the unstable fixed point x = 1 − 1/3.5 = 0.714285 . . . is presented in
Fig. 7. The semilog plot on the right of this figure shows that the distance be-
tween neighboring break points decreases exponentially near some critical val-
ues. In this plot, ξk denotes jump locations which were recovered from the field
g1000.ends. This graph was generated with semilogy(diff(g1000.ends)).
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Fig. 6. Piecewise chebfun representation of g1000

3.5 . Now there are 4 constant values
instead of 2.
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Fig. 7. Left: plot of g1000

3.5 near the unstable fixed point x = 1−1/3.5. Right: semilog
plot of the distance between breakpoints of g1000

3.5 .

Because these subsequences of polynomials are converging to piecewise
constant functions, the pointwise convergence is slower near the location of a
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jump in the limit function. Figure 8 shows a grayscale map of the logarithm
of the number of iterations required for a subsequence {gk

r (x0)} to converge
to its limit, to a tolerance of 10−5. This figure is not the result of a chebfun
computation; it is provided to give insight into the convergence of chebfun
computations. Notice that near bifurcation points, convergence is very slow,
regardless of the starting value. Away from these regions, convergence is fast
almost everywhere. The locations of slow convergence in this case seem to
coincide with the jump locations in the limiting function. Similar convergence
maps have been presented in [5].
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Fig. 8. Number of iterations needed to converge (to a tolerance of 10−5) to the
2-cycle and 4-cycle limits as a function of x0 and r. The grayscale map shows the
log

10
of the number of iterations. The bifurcation diagram is superimposed (solid

lines). Figs 5 and 6 correspond to vertical sections through this plot at r = 3.2 and
r = 3.5, respectively.

Finally, the logistic map can also be used to illustrate some limitations
of piecewise polynomial representations. Near bifurcation points, for instance,
chebfun representations of the maps gk

r can only be obtained for very small
values of k, since the degree of the representations grows exponentially with
k and the limit is not achieved in thousands of iterations. Similarly, near or
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at the chaotic regimes, the maps are impossible to represent for large k due
to the complexity of these functions.

3 Chebops

The chebop system developed by Driscoll, Bornemann, and Trefethen [6] is
an extension of the chebfun system to handle linear operators. Here, the anal-
ogy is between matrices and continuous operators rather than vectors and
functions.

A chebop object is defined by a domain, a chebfun, or another chebop.
Identity, differentiation and integration operators, for instance, are defined
using the domain class:

[d,x] = domain(0,1);

D = diff(d) % differentiation

I = eye(d) % identity

S = cumsum(d) % integration

We point out that domain returns a domain object and a chebfun, in this case
x. The multiplication operator, on the other hand, is defined by a chebfun and
the exponential operator by a chebop. These operators can then be combined
to generate other chebops. For example, L = D^2 + 5*I defines the operator
L : u 7→ ∂2u/∂x2 + 5u.

In chebops, multiplication has been overloaded to apply operators to cheb-
funs and other chebops. This can be illustrated as follows:

u = sin(3*pi*x)

f = L*u

Now, suppose that we would like to solve the differential equation Lu = f
for u. Of course, the backward operation requires boundary conditions for
uniqueness. For example, if the desired boundary conditions are homogeneous
Dirichlet at x = 0 and Neumann at x = 1, we augment L with

L.lbc = ’dirichlet’ % left boundary condition

L.rbc = ’neumann’ % right boundary condition

and the solution of the differential equation can then be obtained using the
backslash command, which has been overloaded to invert chebops:

sol = L\f

The algorithms used in the chebop system are described in [6]. When in-
verting these operators, as in the solution of differential equations, chebops
rely on adaptive spectral collocation methods that are also based on Cheby-
shev polynomials [7, 16]. Lazy evaluations of the associated spectral discretiza-
tion matrices are performed to compute the solution. As in the chebfun system,
the polynomial degree of the solution of a differential equation is determined
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by the relative magnitudes of Chebyshev coefficients. In the present imple-
mentation, most chebops operations are restricted to global representations,
i.e., to splitting off mode.

We give a number of examples that illustrate the use of chebops in the
solution of linear and nonlinear ODEs, PDEs, and eigenvalue problems. The
codes used to solve each problem are provided here, and more examples can
be downloaded from the chebfun website [18].

Linear differential equations with variable coefficients

Consider the hypergeometric equation

xy′′ + (5 − x)y′ + y = sin(5x), x ∈ (1, 6), (3)

subject to homogeneous Neumann boundary conditions. The chebop syntax
to obtain a solution is

[d, x] = domain([1 6]);

D = diff(d);

L = diag(x)*D^2 + diag(5-x)*D + eye(d) & ’neumann’;

u = L\sin(5*x);

plot(u)

Here diag is used to define the multiplication operator and & to define the
boundary conditions. When this code is executed, the system adaptively de-
termines that the desired solution can be represented to approximately ma-
chine precision by a polynomial of degree 47. The plot is shown in the left of
Figure 9. The maximum value of the residual in this calculation is

>> norm(L*u-sin(5*x),inf)

ans = 3.925115787950517e-11
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Fig. 9. Chebop solution of two boundary value problems. Left: the hypergeometric
equation (3). Right: the boundary layer problem (4) with ε = 0.02, 0.04, . . . , 0.2.
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Our next example is the singularly perturbed problem [10],

εy′′ − xy′ + y = 0, x ∈ (−1, 1), y(−1) = −2, y(1) = −1. (4)

Chebops handle boundary layers well, as the clustering of Chebyshev nodes
provide good resolution near the endpoints of the interval. The following com-
mands generate plots for several values of ε:

figure, hold on

[d,x] = domain(-1,1);

D = diff(d);

for ep = 0.02:0.02:0.2

L = ep*D^2-diag(x)*D+eye(d);

L.lbc = -2; L.rbc = -1;

plot(L\0)

end

The solutions correspond to polynomials of degrees 64, 50, 42, 38, 36, 34, 34,
28, 28, 28, and are presented on the right of Figure 9.

The Orr-Sommerfeld eigenvalue problem

The chebop system also overloads the command eigs to solve eigenvalue
problems. The eigenvalues of the 1D Laplacian operator on [0, π], for instance,
can be easily computed with

>> d = domain(0,pi);

>> L = -diff(d,2) & ’dirichlet’;

>> eigs(L,6)

ans =

0.999999999999991

3.999999999999823

8.999999999999659

15.999999999999831

25.000000000000089

35.999999999999893

The command eigs has been overloaded instead of eig because, in Matlab,
the latter is used to return all eigenvalues of a matrix, which is not possible for
differential operators. The details of which eigenvalues are returned by eigs

can be found in [6].
Our next example is an Orr-Sommerfeld generalized eigenvalue problem

arising in the eigenvalue stability analysis of plane Poiseuille fluid flow. The
Orr-Sommerfeld equation is given by

d4u

dx4
− 2α2 d2u

dx2
+ α4u− iαR

[

(1 − x2)

(

d2u

dx2
− α2u

)

− 2u

]

= λ

(

d2u

dx2
− α2u

)
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where R is the Reynolds number and α a wave number. Orszag showed in [11]
that R = 5772.22, α = 1.02056 are critical values, with one of the eigenvalues
crossing to the right half of the complex plane. We repeat his eigenvalue
computation using chebops.

[d,x] = domain(-1,1);

I = eye(d); D = diff(d);

R = 5772.22; alpha = 1.02056;

B = D^2 - alpha^2;

A = B^2/R - 1i*alpha*(2+diag(1-x.^2)*B);

A.lbc(1) = I; A.lbc(2) = D;

A.rbc(1) = I; A.rbc(2) = D;

e = eigs(A,B,50,’LR’);

We confirm Orszag’s result by showing these eigenvalues in Figure 10 and
computing their largest real part:

>> max(real(e))

ans = 6.129513257887425e-09
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Fig. 10. Rightmost eigenvalues of the Orr-Sommerfeld operator in the complex
plane for R = 5772.22 and α = 1.02056.

Linear partial differential equations

Certain linear partial differential equations can also be handled by chebops.
In the following example, we use the exponential operator expm to advance in
time. Writting a linear partial differential equation in the form ut = Lu, we
have u(t + ∆t, x) = exp(∆tL)u(t, x), assuming that exp(∆tL) is well defined.
The following code solves the convection-diffusion equation,

ut = 0.05uxx − xux, x ∈ (−2, 2), (5)
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with homogeneous Dirichlet boundary conditions and initial condition u(0, x) =
−|x + 0.5|+ |x − 0.5| − |x − 1| + 2.

[d,x] = domain(-2,2);

splitting on

u = chebfun(@(x) -abs(x+0.5)+abs(x-0.5)-abs(x-1)+2, d);

splitting off

L = 0.05*diff(d,2)-diag(x)*diff(d);

dt = 0.2; expmL = expm(dt*L & ’dirichlet’);

plot(u,’k’, ’linewidth’,4), hold on

for t = 0:dt:3

u = expmL*u;

plot(u,’k’)

end

The result of this execution is presented in Fig. 11. Notice that despite the
lack of smoothness in the initial condition, chebops can be used in the solution
of this problem as u is smooth for all t > 0.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5
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1.5

x

u
(x

,t
)

Fig. 11. Solution to the PDE (5) at several times t. The initial condition is shown
by a thick line.

Chebops can also be used to solve nonlinear PDEs with implicit or semi-
implicit time-stepping schemes. One example, involving the nonlinear cubic
Schrödinger equation, is presented in [6].

Nonlinear boundary-value problems

While linear equations can be solved with “\”, nonlinear problems require
iterative algorithms. In our next example we use Newton’s method together
with chebop technology to solve the boundary-value problem
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εu′′ + 2(1 − x2)u + u2 = 1, x ∈ (−1, 1), (6)

with homogeneous Dirichlet boundary conditions. This equation, due to Car-
rier, is discussed at length by Bender and Orszag [2]. The problem has many
solutions, some of which can be approximated by boundary-layer theory. The
following code was used to generate the solution plotted in Fig. 12. The figure
also shows the intermediate Newton method iterates.

[d,x] = domain(-1,1);

D2 = diff(d,2); F = diag(2*(1-x.^2));

u = 2*(x.^2-1).*(1-2./(1+20*x.^2));

eps = 0.01; nrmdu = Inf;

plot(u,’--k’), hold on

while nrmdu > 1e-10

r = eps*D2*u + F*u + u.^2 - 1;

A = eps*D2 + F + diag(2*u) & ’dirichlet’;

A.scale = norm(u); delta = -(A\r);

u = u+delta; nrmdu = norm(delta)

plot(u,’k’)

end

plot(u,’k’, ’linewidth’,4)
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Fig. 12. Newton’s method solution of (6). Intermediate iterates uk are shown to-
gether with the initial guess (dashed) and the final solution (thick line) — cf. Fig.
9.26 in [2].

Ground state solution of the 3D cubic Schrödinger equation

Our final example, which comes to us from Roudenko and Holmer, is related
to radial solutions of the cubic Schrödinger equation in R

3,
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iut + ∆u + |u|2u = 0.

Using the separation of variables u(x, t) = eitv(x), we obtain a nonlinear
equation for v,

−v + ∆v + |v|2v = 0. (7)

This equation has an infinite number of solutions in H1(R3). The solution of
minimal mass is positive, radial, and exponentially decaying and is called the

ground state [19].
We shall seek a positive radial solution to (7) with exponential decay.

Because the current implementation of the chebfun and chebop systems is
restricted to bounded domains, we perform the change of variables r = r̃/(1−
r̃), r̃ ∈ [0, 1], and Q(r̃) = v(r̃/(1− r̃)). An equation for Q can then be written
as

r̃
[

−Q + (1 − r̃)4Qr̃r̃ + Q3
]

+ 2(1 − r̃)4Qr̃ = 0, r̃ ∈ (0, 1), (8)

with boundary conditions Qr̃(0) = Q(1) = 0. As in the previous example, we
use Newton’s method to find a solution.

[d,r] = domain(0,1); D = diff(d); D2 = D^2;

Q = chebfun(@(r) 4*sech(2*r./(1-r+eps)), d);

nrmdu = Inf;

while nrmdu > 1e-13

res = r.*(Q.^3-Q+(1-r).^4.*(D2*Q)) + 2*(1-r).^4.*(D*Q);

A = diag(r)*(diag(3*Q.^2)-eye(d)+diag((1-r).^4)*D2)+ ...

2*diag((1-r).^4)*D;

A.rbc = ’dirichlet’ ; A.lbc = ’neumann’;

A.scale = norm(Q); delta = -(A\res);

Q = Q+delta; nrmdu = norm(delta)

end

plot(Q)

The resulting plot is shown in Figure 13.
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Fig. 13. The solution of (8) computed with Newton’s method.
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4 Concluding Remarks

A brief review of the chebfun and chebop systems has been presented and
several examples provided to demonstrate how simple and effective the system
is. Some capabilities of the software have not been mentioned here, such as
quasimatrices [15]. The system is evolving and efforts are currently being
made to extend it to handle unbounded domains via mapped polynomial
representations. We hope that the change of variables performed in the final
example may be handled automatically in future releases.

The computations presented in this paper were carried out with the Oc-
tober 2008 release of chebfun Version 2. The code is freely available under a
BSD-type software license, and can be found together with a user’s guide and
other information at http://www.comlab.ox.ac.uk/chebfun.
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