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Abstract. Analogues of QR, LU, SVD, and Cholesky factorizations are proposed for problems in which
the usual discrete matrix is replaced by a “quasimatrix,” continuous in one dimension, or a “cmatrix,”
continuous in both dimensions. Applications include Chebfun and similar computations involving functions
of one or two variables. Two challenges arise: the generalization of the notions of triangular structure and
row and column pivoting to continuous variables (required in all cases except the SVD), and the convergence
of the infinite series that define the cmatrix factorizations. The generalizations of the factorizations work
out neatly, but mathematical questions remain about convergence of the series. For example, our theorem
about existence of an LU factorization of a cmatrix (a convergent infinite series) requires the cmatrix to be
analytic in a “stadium” region of the complex plane.
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1. Introduction. A fundamental idea of linear algebra is matrix factorization, the
representation of matrices as products of simpler matrices that may be, for example, tri-
angular, tridiagonal, or orthogonal. Such factorizations provide a basic tool for describing
and analyzing numerical algorithms. Indeed, one might regard this as the central dogma
of classical numerical linear algebra: matrix algorithms correspond to matrix factorizations.
For example, Gaussian elimination for solving a system of linear equations constructs a
factorization of a matrix into a product of lower- and upper-triangular matrices, which
represent simpler systems that can be solved successively by forward elimination and back
substitution.

In this article we describe continuous analogues of matrix factorizations for contexts
where vectors become univariate functions and matrices become bivariate functions.1 Math-
ematically, such ideas have roots going back a century in the work of Fredholm, Hilbert,
Schmidt, and Mercer [10, 19, 21, 22], which is marvelously surveyed in [27]. Algorithmically,
in one sense they are decades old, since vectors and matrices have been obtained by dis-
cretizing functions and operators since the beginning of the computing era, but in another
they are rather recent, since it is only in the present century that a movement has arisen
to enable a kind of numerical computing in which the user deals directly with continuous
rather than discrete objects. The two of us are representatives of the Chebfun software
project, which has been developing such capabilities since 2003 [2, 34]. The continuous ana-
logues we shall describe are also closely related to techniques for low-rank approximation
of functions, matrices, and higher-dimensional tensors that have been put forward in recent
years by Bebendorf, Geddes, Hackbusch, Tyrtyshnikov, and many others; see §8 for more
names and references.
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1Our analogues involve finite or infinite sums of rank 1 pieces and are very close to algorithms of numerical
linear algebra. Different continuous analogues of matrix factorizations, closer to functional analysis, have
been described for example in publications by Gohberg and his coauthors such as [12].
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Fig. 1.1. A rectangular and a square matrix. The value of A in row i, column j is A(i, j).

This is a visual subject, and indeed, some of the power of the matrix way of thinking
comes from the easy way in which it connects to our highly-developed visual skills. So
we shall rely heavily on schematic representations, and we shall avoid spelling out precise
definitions of what it means, say, to multiply a quasimatrix by a vector when the associated
schema makes it obvious to the experienced eye. To begin the discussion, Figure 1.1 suggests
the two kinds of discrete matrices we shall be concerned with, rectangular and square.
An m × n matrix is an ordered collection of mn data values, which can be utilized as
a representation of a linear mapping from Cn to Cm. Our convention will be to show a
rectangular matrix by a 6× 3 array and a square one by a 6× 6 array.

We shall be concerned with two kinds of continuous analogues of matrices. In the first
case, one index of a rectangular matrix becomes continuous while the other remains discrete.
Such structures were perhaps first discussed by de Boor [7], Stewart [25, pp. 33–34], and
Trefethen and Bau [33, pp. 52–54]. Following Stewart, we call such an object a quasimatrix.
The notion of a quasimatrix presupposes that a space of functions has been prescribed, and
for simplicity we take this to be C([a, b]), the space of continuous real or complex functions
defined on an interval [a, b] with −∞ < a < b < ∞. An “[a, b]×n quasimatrix” is an ordered
set of n functions in C([a, b]), which we think of as functions of a “vertical” variable y. We
depict it as shown in Figure 1.2, which suggests how it can be utilized as a representation of
a linear map from Cn to C([a, b]). Its (conjugate) “transpose,” an “n× [a, b] quasimatrix,”
is also a set of n functions in C([a, b]), which we think of as functions of a “horizontal”
variable x. We utilize each function as defining a linear functional on C([a, b]), so that the
quasimatrix represents a linear map from C([a, b]) to C

n.

A A∗

Fig. 1.2. An [a, b]×n quasimatrix and its n× [a, b] conjugate transpose. Each column in the first case
and row in the second is a function defined on [a, b]. For the case of A, on the left, the row index i has
become a continuous variable y, and the value of A at vertical position y in column j is A(y, j). Similarly
on the right the value of A∗ in row i at horizontal position x is A∗(i, x).
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Secondly, we shall consider the fully continuous analogue of a matrix, a cmatrix , which
can be rectangular or square.2 A cmatrix is a function of two continuous variables, and again
for simplicity, we take it to be a continuous function defined on a rectangle [a, b] × [c, d].
Thus a cmatrix is an element of C([a, b]× [c, d]), and it can be utilized as a representation
of a linear map from C([c, d]) to C([a, b]) (the kernel of a compact integral operator). To
emphasize the matrix analogy, we denote a cmatrix generically by A rather than f and
we refer to it as a “cmatrix of dimensions [a, b] × [c, d].” The “vertical” variable is y, the
“horizontal” variable is x, and for consistency with matrix notation, the pair of variables is
written in the order (y, x), with A(y, x) being the corresponding value of A.

Schematically, we represent a cmatrix by an empty box (Figure 1.3).

A A

Fig. 1.3. Rectangular and square cmatrices, both of dimensions ∞×∞. A cmatrix is just a bivariate
function, but the special name is convenient for discussion of factorizations. We think of the vertical
variable as y and the horizontal variable as x. For consistency with matrix conventions, a point in the
rectangle is written (y, x), and the corresponding value of A is A(y, x).

A square cmatrix is a cmatrix with c = a and d = b, in which case, for example, it
makes sense to consider eigenvalue problems for the associated operator, although eigenvalue
problems are not discussed here. A hermitian cmatrix is a square cmatrix that satisfies
A∗ = A, that is, A(x, y) = A(y, x) for each (y, x) ∈ [a, b]× [a, b].

Note that this article does not consider infinite discrete matrices, a more familiar gener-
alization of ordinary matrices for which there is also a literature of matrix factorizations [16].
For cmatrix factorizations we will, however, consider the generalizations of quasimatrices
to structures with infinitely many columns or rows, which will accordingly be said to have
dimensions [a, b]×∞ or ∞× [a, b].

Throughout this article, we work with the spaces of continuous functions C([a, b]),
C([c, d]), and C([a, b] × [c, d]), as indeed did Hilbert and Schmidt in their early work in
this area. The restriction to continuous functions is not necessary, and perhaps it is not
mathematically very natural, especially in the cases of QR factorization and SVD. However,
our aim is to set forth basic ideas without getting lost in technicalities of regularity. We
trust that if these generalizations of matrix factorizations prove useful, the definitions and
results will be extended by future authors to less smooth function spaces.

2. Four matrix factorizations. We shall consider analogues of four matrix factor-
izations described in references such as [13, 26, 33]: LU, Cholesky, QR, and SVD. The
Cholesky factorization applies to square matrices (which must in addition be hermitian and
nonnegative definite), whereas the other three apply more generally to rectangular matrices.

2We are well aware that it is a little odd to introduce a new term for what is, after all, nothing more than
a bivariate function. For the moment we have decided to go ahead with “cmatrix” nonetheless, knowing
from experience how useful the term “quasimatrix” has been.
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For rectangular matrices, we shall assume m ≥ n, that is, there are at least as many rows
as columns. There are many other factorizations we shall not discuss, such as similarity
transformations to diagonal, tridiagonal, Hessenberg, or triangular form.

Let A be a real or complexm×n matrix. An LU factorization is a factorization A = LU ,
where U is of dimensions n×n and upper-triangular and L is of dimensions m×n and unit
lower-triangular, which means that it is lower-triangular with diagonal entries equal to 1;
see Figure 2.1. Such a factorization can be computed by the algorithm known as Gaussian
elimination without pivoting.
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x x x
x x x
x x x

=
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1    
x 1  
x x 1
x x x
x x x
x x x
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x x x
  x x
    x

U

Fig. 2.1. LU factorization of a matrix (without pivoting). Blank spaces indicate zero entries. The unit
lower-triangular matrix L has 1 on the diagonal and arbitrary entries below the diagonal. The factorization
is unique if the columns of A are linearly independent, but it does not always exist.

A common interpretation of LU factorization is that it is a change of basis from the
columns of A to the columns of L. Column a1 of A is equal to u11 times column ℓ1 of L,
column a2 of A is equal to u12ℓ1 + u22ℓ2, and so on. Another interpretation is that it is a
representation of A as a sum of n matrices of rank 0 or 1. If u∗

k denotes the kth row of U ,
then we have

A =

n
∑

k=1

ℓku
∗

k.(2.1)

If the columns of A are linearly dependent, so that they fail to form a basis, then this will
show up as one or more zero entries on the diagonal of U , making U singular.

Not every matrix has an LU factorization; the factorization exists if and only if Gaussian
elimination completes a full n steps without an attempted division of a nonzero number by
zero. To deal with arbitrary matrices, it is necessary to introduce some kind of pivoting in
the elimination process. We shall return to this subject beginning in §5.

For our second factorization, let A be a square, positive semidefinite hermitian matrix.
In this case there is a symmetric variant of LU factorization known as Cholesky factorization,
where A = R∗R and R is upper-triangular with nonnegative real numbers on the diagonal
(Figure 2.2). The corresponding representation of A as a sum of rank 0 or 1 matrices takes
the form

A =

n
∑

k=1

rkr
∗

k,(2.2)

where r∗k is the kth row of R. Such a factorization can be computed by a symmetrized variant
of Gaussian elimination which we shall call the Cholesky algorithm (though most people
would probably just call it Cholesky factorization). No pivoting is needed, and indeed, it
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is known that the algorithm when applied to a hermitian matrix A completes successfully
(meaning that at no step is the square root of a negative number required) if and only if
A is nonnegative definite. This property makes the Cholesky algorithm a standard method
for testing numerically if a matrix is definite.

x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
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R ∗
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  r x x x x
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      r x x
        r x
          r
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Fig. 2.2. Cholesky factorization of a hermitian nonnegative definite matrix. The diagonal entries of
R are real and nonnegative, as suggested by the symbol “ r”.

Our third and fourth factorizations apply to arbitrary rectangular matrices. A QR
factorization of A is a factorization A = QR where Q is an m× n matrix with orthonormal
columns and R is an n× n upper-triangular matrix with nonnegative real numbers on the
diagonal (Figure 2.3). Every matrix has a QR factorization, and if the columns of A are
linearly independent, it is unique. The corresponding representation of A is

A =

n
∑

k=1

qkr
∗

k.(2.3)

A QR factorization can be computed by Gram–Schmidt orthogonalization or by Householder
triangularization. Throughout this article, when we refer to Gram–Schmidt orthogonaliza-
tion, it is assumed that in cases of rank-deficiency, where a column of a matrix becomes
zero after othogonalization against previous columns, an arbitrary new orthonormal vector
is introduced to keep the process going.
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Fig. 2.3. QR factorization of a matrix. The columns of Q are orthonormal, as suggested by the “q”
symbols.

Finally we consider the singular value decomposition (SVD). An SVD of a matrix A is a
factorization A = USV ∗, where U and V have orthonormal columns, known as the left and
right singular vectors of A, respectively, and S is diagonal with real nonnegative diagonal
entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, known as the singular values (Figure 2.4). An SVD always
exists, and the singular values are uniquely determined. The singular vectors corresponding
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to simple singular values are also unique up to complex signs, i.e., real or complex scaling
factors of modulus 1. If some of the singular values are equal, there is further nonuniqueness
associated with arbitrary breaking of ties.
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Fig. 2.4. SVD of a matrix. The columns of U and V (i.e., the rows of V ∗) are orthonormal, and the
letters “σ” denote nonnegative real numbers in nonincreasing order.

The SVD corresponds to the representation

A =

n
∑

j=1

σjujv
∗

j .(2.4)

For any k with 1 ≤ k ≤ n, we may consider the partial sum

Ak =

k
∑

j=1

σjujv
∗

j .(2.5)

Let ‖ · ‖ denote the Frobenius or Hilbert–Schmidt norm,

‖A‖ =
(

∑

i,j

|aij |
2
)1/2

.(2.6)

The following property follows from the orthonormality of {uj} and {vj} and the ordering
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0: for each k with 1 ≤ k ≤ n− 1, Ak is a best rank k approximation
to A with respect to ‖ · ‖, with corresponding error Ek = A−Ak of magnitude

‖Ek‖ = ‖A−Ak‖ = τk+1 =
(

n
∑

j=k+1

σ2
j

)1/2

.(2.7)

This fundamental property of the SVD originates with Schmidt [22, 24, 35] and was gener-
alized to rectangular matrices by Eckart and Young [9].

We defined the SVD algebraically, then stated (2.7) as a consequence. It is also possible
to put the reasoning in the other direction. Begin by defining E0 = A. Find a nonnegative
real number σ1 and unit vectors u1 and v1 such that σ1u1v

∗

1 is a best approximation to E0 of
rank 1, and define E1 = E0−σ1u1v

∗

1 ; then find a nonnegative real number σ2 and unit vectors
u2 and v2 such that σ2u2v

∗

2 is a best approximation to E1, and define E2 = E1−σ2u2v
∗

2 ; and
so on. Then {uj} and {vj} are orthonormal sets, the scalars satisfy σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,
and we have constructed an SVD of A.

The remainder of this article is devoted to seven tasks. For three of the four matrix fac-
torizations, we shall consider the two generalizations to the cases where A is a quasimatrix,
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continuous in one direction, or a cmatrix, continuous in both directions. For the Cholesky
factorization, which applies only to square matrices, only the cmatrix generalization is rel-
evant.

One of our factorizations can be generalized immediately, the SVD. The other three
involve triangular quasimatrices and require pivoting to be introduced in the discussion.
Indeed, a central theme of this article is the generalization of the notions of pivoting and
triangular matrices to a continuous setting (beginning in §5). For matrices, one can speak
of LU, Cholesky, and QR factorizations without pivoting, taking the “next” row and/or
column at each step of the factorization process, but in continuous directions, there is no
next row or column. For quasimatrices, we shall see that row pivoting is necessary for LU
factorization, which involves a triangular quasimatrix L. For cmatrices, we shall see that
column pivoting is necessary for QR factorization, which involves a triangular quasimatrix
R, and both row and column pivoting are necessary for LU and Cholesky factorizations,
which involve two triangular quasimatrices. No pivoting is needed in the SVD.

For each of our factorizations, we shall consider five aspects: (1) definition, (2) his-
tory, (3) elementary properties, (4) advanced properties (for the cmatrix factorizations), and
(5) algorithms. A study like this could become exhausting if it attempted to be exhaustive,
so we shall touch upon many matters only briefly. The elementary properties will be just
selections, stated as theorems without proof. (Proofs in many cases can be found in the
first author’s DPhil thesis [28], and a good foundation for the quasimatrix factorizations
is [7].) The advanced properties mainly concern convergence of series—about which in gen-
eral we know all too little—as well as other properties such as continuity of the summands
and detection of positive semidefiniteness by Cholesky factorization. As for algorithms, in
general we have clear ideas of what can be done, some of which have been implemented in
Chebfun, though in several of the cmatrix cases there is not yet a theoretical justification.
Accordingly we describe some algorithms without making claims of their validity.

3. QR factorization of a quasimatrix. The QR factorization of an [a, b]×n quasi-
matrix A is a straightforward extension of the rectangular matrix case. As in that case,
column pivoting could be introduced but is not necessary for the factorization to make sense,
and we do not include it. Following the schema of Figure 3.1, we define the QR factorization
as follows. Orthonormality of functions in C([a, b]) is defined with respect to the standard
L2 inner product.

Definition 3.1. Let A be an [a, b] × n quasimatrix. A QR factorization of A is a
factorization A = QR where Q is an [a, b] × n quasimatrix with orthonormal columns and
R is an n× n upper-triangular matrix with nonnegative real numbers on the diagonal.

A

= q q q

Q

r x x
  r x
    r

R

Fig. 3.1. QR factorization of a quasimatrix.

Note that throughout this article, each column of a quasimatrix is taken to be a function
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in C([a, b]) or C([c, d]). Thus it is implicit in this definition that the columns of Q are
continuous functions, though as discussed at the end of §1, this restriction could be relaxed.

The idea of QR factorization of quasimatrices was perhaps first mentioned in [33, pp. 52–
54], though the underlying mathematics was well understood by Schmidt [22, 27]. The topic
became one of the original capabilities in Chebfun [1, 2], invoked by the command qr (which
is by no means limited to continuous functions). Originally, the algorithm employed by
Chebfun was Gram–Schmidt orthogonalization, which has the drawback that it is unstable
if A is ill-conditioned. This was later replaced by an algorithm stable and applicable in all
cases based on a continuous analogue of Householder triangularization [31]. Another less
numerically stable approach for the full rank case, mentioned in [1], would be to form the
Cholesky factorization R∗R of the n×n matrix A∗A and then set Q = AR−1. Since the aim
of this article is mainly to define certain factorizations, we shall not say much about issues
of numerical stability.

Here is a theorem summarizing some basic properties.

Theorem 3.2. Every [a, b] × n quasimatrix has a QR factorization, which can be
calculated by Gram–Schmidt orthogonalization. If the columns of A are linearly independent,
the QR factorization is unique. For each k with 1 ≤ k ≤ n, the columns q1, . . . , qk of Q
form an orthonormal basis of a space that contains the space spanned by columns a1, . . . , ak
of A. The formula (2.3) gives A as a sum of rank 0 or 1 quasimatrices formed from the
columns of Q (functions in C([a, b])) and rows of R (vectors in Cn).

Note that as always, the quasimatrix Q of Theorem 3.2 is assumed to have columns
that are continuous functions defined on [a, b]. In the Gram–Schmidt process, the property
of continuity is inherited automatically at each step, so long as zero columns are not en-
countered as a consequence of rank-deficiency. In that case, an arbitrary new function qk is
introduced that is orthogonal to q1, . . . , qk−1, and we require qk to be continuous.

Although it is not our emphasis here, one can also define a QR factorization of an
n × [c, d] quasimatrix, that is, a quasimatrix continuous along rows rather than columns.
The factorization process requires column pivoting and yields the product A = QR, where
Q is an n×n unitary matrix and R is an n× [c, d] quasimatrix that is upper-triangular and
diagonally real in a sense to be defined in §5.

4. SVD of a quasimatrix. We define the SVD of a quasimatrix as follows (Fig-
ure 4.1).

Definition 4.1. Let A be an [a, b] × n quasimatrix. A singular value decomposition
(SVD) of A is a factorization A = USV ∗ where U is an [a, b]×n quasimatrix with orthonor-
mal columns, S is an n× n diagonal matrix with diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,
and V is an n× n orthogonal matrix.

A

= u u u

U

σ    
  σ  
    σ

S

v v v
v v v
v v v

V ∗

Fig. 4.1. SVD of a quasimatrix. U is a quasimatrix and S and V are ordinary matrices.
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As with QR factorization, it is implicit in this definition that each column of U is a
continuous function.

The SVD of a quasimatrix was considered by Battles and Trefethen [1, 2]. The following
theorem summarizes some of its basic properties, all of which mirror properties of the discrete
case.

Theorem 4.2. Every [a, b] × n quasimatrix has an SVD, which can be calculated
by computing a QR decomposition A = QR followed by a matrix SVD of the triangular
factor, R = USV ∗; an SVD of A is then obtained as (QU)SV ∗. The singular values are
unique, and the singular vectors corresponding to simple singular values are also unique
up to complex signs. The formula (2.4) gives A as a sum of rank 0 or 1 quasimatrices
formed from the singular values and vectors. The rank of A is r, the number of nonzero
singular values. The columns u1, . . . , ur of U form an orthonormal basis for the range of
A when regarded as a map from Cn to C([a, b]), and the columns vr+1, . . . , vn of V form
an orthonormal basis for the nullspace. Moreover, the partial sums Ak defined by (2.5) are
best rank k approximations to A, with errors ‖Ek‖ = ‖A− Ak‖ equal to the quantity τk+1

of (2.7).

Chebfun has included a capability for computing the SVD of a quasimatrix from the
beginning, through the svd command. The algorithm used is based on the QR factorization
of A, as described in the theorem. From these ideas one can readily define further related no-
tions including the pseudoinverse V S−1U∗ (in the full rank case) and the condition number
κ(A) = κ(S) of a quasimatrix, computed by Chebfun commands pinv and cond.

Following [33, Lecture 4], it is interesting to note the geometrical interpretation of
the SVD of a quasimatrix. If A is a quasimatrix of dimensions [a, b] × n, then it can be
interpreted as a linear mapping from Cn to C([a, b]). The range of A is a subspace of C([a, b])
of dimension at most n, and A maps the unit ball in Cn (defined with respect to ‖ · ‖2, not
‖ · ‖) to a hyperellipsoid in C([a, b]), which we may think of as having dimension n if some
of the axis lengths are allowed to be zero. The right singular vectors are an orthonormal
basis for the unit ball in C

n, the left singular vectors are the semiaxis directions of the
hyperellipsoid, and the singular values are the semiaxis lengths.

5. LU factorization of a quasimatrix. We come now to the first entirely new topic
of this article: the generalization of the ideas of pivoting and triangular structure to quasi-
matrices. Figure 5.1 shows that we are heading for a factorization A = LU , where L is a
quasimatrix and U is an upper-triangular matrix, but to complete the description we must
explain the structure of L.

In §2, LU factorization of matrices was presented without pivoting. Algorithmically,
this corresponds to an elimination process in which the first row is used to introduce zeros
in the first column, the second row is used to introduce zeros in the second column, and
so on. When the row index becomes continuous, however, this approach no longer makes
sense. One could take the top of the quasimatrix as a “first row,” but what would be the
second row? And so it is that a continuous analogue of row pivoting will be an essential
part of our definition of LU factorization of a quasimatrix. (Another term for row pivoting
is partial pivoting.) When we speak of LU factorization of an [a, b] × n quasimatrix, row
pivoting is always assumed.

For matrices, the most familiar way to talk about pivoting is in terms of interchange of
certain rows at each step, leading to a factorization

PA = LU(5.1)
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A

=

L

x x x
  x x
    x

U

(0) (1) (2)

Fig. 5.1. LU factorization of a quasimatrix as a product of a unit lower-triangular quasimatrix and
an upper-triangular matrix. Row pivoting (also known as partial pivoting) is obligatory and is reflected in
the digits displayed under L, which show the numbers of zeros fixed at nested locations in each column.

where P is a permutation matrix. However, we shall work with a different and mathe-
matically equivalent formulation in terms of selection of certain rows at each step, without
interchange. In this formulation we do not move any rows, and there is no permutation
matrix P . We get a factorization

A = LU,(5.2)

but instead of L being lower-triangular, it is what MATLAB calls psychologically lower-
triangular, meaning that it is a row permutation of a lower-triangular matrix.3

A choice in our definitions arises at this point. Traditionally in numerical linear algebra,
a pivot is chosen corresponding to the maximal element in absolute value in a row and/or
column, but maximality is not necessary for the factorization to proceed, nor is it always the
best choice algorithmically. (For example, submaximal pivots may take less work to find than
maximal ones and may have advantages for preserving sparsity [8].) In proposing generalized
factorizations for quasimatrices and cmatrices, should we use a term like LU factorization
for any factorization with a pivot sequence that works (in which case L may take arbitrarily
large values off the diagonal), or shall we restrict it to the case where maximal pivots are
used (in which case all values off the diagonal are bounded by 1 in absolute value)? In this
article we follow the latter course and insist that pivoting involves maximal values. This
makes our factorizations as close as possible to unique and helps us focus on cases where we
have the best chance of achieving convergence theorems for cmatrices. We emphasize that
this is a matter of definitions, however, and one could equally well make the other choice.

The Gaussian elimination process for matrices that leads to (5.2)—assuming that pivots
are based on maxima—could be described in the following nonstandard way. Begin with
E0 = A. At step k = 1, look in the first column of E0 to find an index i1 for which |E0(i, 1)|
is maximal and define ℓ1 = E0(·, 1)/E0(i1, 1), u∗

1 = E0(i1, ·), and E1 = E0 − ℓ1u
∗

1. (If
E0(i1, 1) = 0, ℓ1 can be any vector with |ℓ1(i)| ≤ 1 for all i and ℓ1(i1) = 1.) The new matrix
E1 is zero in row i1 and column 1. At step k = 2, look in the second column of E1 to find
an index i2 for which |E1(i, 2)| is maximal and define ℓ2 = E1(·, 2)/E1(i2, 2), u

∗

2 = E1(i2, ·),
and E2 = E1 − ℓ2u

∗

2. (If E1(i2, 2) = 0, ℓ2 can be any vector with |ℓ2(i)| ≤ 1 for all i,
ℓ2(i1) = 0, and ℓ2(i2) = 1.) The matrix E2 is now zero in rows i1 and i2 and columns 1

3The term “psychologically triangular” is not particularly felicitous, but the second author seems to
have coined it! He suggested this expression to MATLAB inventor Cleve Moler during a conversation years
ago, probably during a coffee break at a SIAM meeting.
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and 2. Continuing in this fashion, after n steps En is zero in all n columns, so it is the zero
matrix, and we have constructed A as a sum (5.3) of n matrices of rank 0 or 1, just as in
(2.1),

A =

n
∑

k=1

ℓku
∗

k.(5.3)

Equation (5.2) holds if L is the psychologically lower-triangular matrix with columns ℓk and
U is the upper-triangular matrix with rows u∗

k.
Gaussian elimination (with row pivoting) for a quasimatrix. When A is an [a, b] × n

quasimatrix, LU factorization is carried out by the analogous n steps. Begin with E0 = A.
At step k = 1, find a value y1 ∈ [a, b] for which |E0(y, 1)| is maximal and define ℓ1 =
E0(·, 1)/E0(y1, 1), u

∗

1 = E0(y1, ·), and E1 = E0 − ℓ1u
∗

1. (If E0(y1, 1) = 0, ℓ1 can be any
function in C([a, b]) with |ℓ1(y)| ≤ 1 for all y and ℓ1(y1) = 1.) The new quasimatrix E1 is
zero in row y1 and column 1. At step k = 2, find a value y2 ∈ [a, b] for which |E1(y, 2)|
is maximal and define ℓ2 = E1(·, 2)/E1(y2, 2), u

∗

2 = E1(y2, ·), and E2 = E1 − ℓ2u
∗

2. (If
E1(y2, 2) = 0, ℓ2 can be any function in C([a, b]) with |ℓ2(y)| ≤ 1 for all y, ℓ2(y1) = 0, and
ℓ2(y2) = 1.) This quasimatrix E2 is zero in rows y1 and y2 and columns 1 and 2. Continuing
in this fashion, after n steps all the columns of En are zero, so it is the zero quasimatrix,
and we have constructed A as a sum (5.3) of n quasimatrices of rank 0 or 1. Equation
(5.2) holds if L and U are constructed analogously as before. The matrix U is the n × n
matrix whose kth row is u∗

k, and it is upper-triangular. The quasimatrix L is the [a, b]× n
quasimatrix whose kth column is ℓk. Column 2 of L has a zero at y1, column 3 has zeros at
y1 and y2, column 4 has zeros at y1, y2, y3, and so on—a nested set of n− 1 zeros. This is
what the digits marked at the bottom in Figure 10 indicate.

Definition 5.1. Definitions related to triangular quasimatrices. In general,
we call an [a, b]×n quasimatrix L together with a specified set of distinct values y1, . . . , yn ∈
[a, b] lower-triangular (we drop the “psychologically,” though in principle it should be there) if
column k has zeros at y1, . . . , yk−1. The diagonal of L is the set of values ℓ1(y1), . . . , ℓn(yn).
If the diagonal values are 1, L is unit lower-triangular. If each diagonal entry dominates
the values in its column in the sense that for each k, |ℓk(y)| ≤ |ℓk(yk)| for all y ∈ [a, b], then
L is diagonally maximal. If L is diagonally maximal and its diagonal values are real and
nonnegative, it is diagonally real maximal. Analogous definitions hold in the transposed case
of n× [a, b] quasimatrices, notably the notion of an upper-triangular n× [a, b] quasimatrix,
whose rows have nested zeros in a set of distinct points x1, . . . , xn.

With these definitions in place, we can state the definition of the LU factorization of an
[a, b]× n quasimatrix A.

Definition 5.2. Let A be an [a, b] × n quasimatrix. An LU factorization of A is a
factorization A = LU where U is an upper-triangular n× n matrix and L is an [a, b]× n
unit lower-triangular diagonally maximal quasimatrix.

If we did not insist on maximal pivots, the definition would be the same except without
the condition that L is diagonally maximal. There is no column pivoting in this discussion,
so U need not be diagonally maximal. One could introduce column pivoting if one wished,
in which case U would be psychologically upper-triangular.

We are not aware of any previous literature on the LU factorization of a quasimatrix,
nor does Chebfun include an overloaded lu command to compute it. The following theorem
summarizes the most basic properties.

Theorem 5.3. Every [a, b] × n quasimatrix has an LU factorization, which can be
computed by quasimatrix Gaussian elimination with row pivoting as described above. If the
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factor L so computed takes only values strictly less than 1 in absolute value off the diagonal,
then the factorization is unique.

As with the Gram–Schmidt process for computing the quasimatrix QR factorization, as
noted after Theorem 3.2, Gaussian elimination for computing the quasimatrix LU factoriza-
tion of Theorem 5.3 produces columns of L with the required property of continuity, which
is inherited from the continuity of the columns of A.

As at the end of §3, we may note that one can also define an LU factorization of an
n×[c, d] quasimatrix, continuous along rows rather than columns. The factorization requires
column instead of row pivoting and yields the product A = LU , where L is an n × n unit
lower-triangular matrix and U is an n × [c, d] upper-triangular quasimatrix. Now it is U
rather than L that is diagonally maximal.

6. QR factorization of a cmatrix. We now turn to our first cmatrix factorization
and accordingly to our first infinite series as opposed to finite sum. Suppose A is a cmatrix of
dimensions [a, b]×[c, d]. As suggested in Figure 6.1, we are going to define a QR factorization
as a factorization A = QR in which Q is an [a, b] ×∞ quasimatrix and R is an ∞× [c, d]
quasimatrix. Such a product corresponds to an infinite series

A =

∞
∑

j=1

qjr
∗

j(6.1)

with qj ∈ C([a, b]) and r∗j ∈ C([c, d]), and to give it a precise meaning, we must specify
what kind of convergence of the series is asserted. In this article, all series are required to
converge absolutely and uniformly with respect to the variables (y, x) ∈ [a, b] × [c, d]. The
absolute convergence ensures that we need not worry about the order in which the sum is
taken. The uniform convergence implies pointwise convergence too, and is consistent with
the definitions that qj , r

∗

j , and A are all continuous. One could require less than absolute
and uniform convergence, but as usual, maximal generality is not our aim.

A

= q q · · ·

Q

  r*
  r*

(0)

(1)
.

.

.

R

Fig. 6.1. QR factorization of a cmatrix as a product of a column quasimatrix with infinitely many
orthonormal columns and an upper-triangular row quasimatrix with infinitely many rows. Column pivoting
is obligatory and is reflected in the digits displayed on the right of R, which show the numbers of zeros fixed
at nested locations in each row. The series implicit in the product QR is assumed to converge absolutely
and uniformly.

It is hardly surprising that we are going to require the columns of Q to be orthonormal.
In addition, R will be upper-triangular, but before explaining this, let us consider what a
factorization as in Figure 6.1 would amount to if R were not required to have triangular
structure. An example to bear in mind would be a case in which we began with an [a, b]×[c, d]
cmatrix A and then computed a Fourier series for each x with respect to the “vertical”
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variable y ∈ [a, b]. This would give us an [a, b]×∞ quasimatrix Q with orthonormal columns
Q(·, j), j = 1, 2, . . . , corresponding to different Fourier modes on [a, b]. The factor R = Q∗A
would be the ∞× [c, d] quasimatrix whose jth row r∗(j, ·) would be the function containing
the jth Fourier coefficients, depending continuously on x. If A were Lipschitz continuous,
say, the series would converge absolutely and uniformly, as required by our definitions. In
no sense would R have triangular structure.

Our aim, however, is not Fourier series but QR factorization. The signal property of QR
factorization is nesting of column spaces, as described in Theorem 3.2 for the quasimatrix
case: for each k, the first k columns of Q must form a basis of a space that contains the “first
k columns” of A. When A is a cmatrix, to make sense of the idea of its first k columns, we
will have to introduce column pivoting. As with the LU factorization of §5, we shall restrict
our attention to pivots based on maximality, giving a correspondingly narrow definition of
the factorization. And thus we are led to the following algorithm for computing the QR
factorization of a cmatrix, which corresponds to what the matrix computations literature
calls “modified” Gram–Schmidt orthogonalization with column pivoting.

Modified Gram–Schmidt orthogonalization (with column pivoting) for a cmatrix. Let A
be an [a, b]× [c, d] cmatrix and set E0 = A. At step k = 1, find a value x1 ∈ [c, d] for which
‖E0(·, x)‖ is maximal, define q1 = E0(·, x1)/‖E0(·, x1)‖ and r∗1(x) = q∗1E0(·, x), and set
E1 = E0 − q1r

∗

1 . Each column of the new cmatrix E1 is orthogonal to q1. (As mentioned at
the beginning of §3, orthonormality and the norm ‖·‖ for functions in C([a, b]) are defined by
the standard L2 inner product.) At step k = 2, find a value x2 ∈ [c, d] for which ‖E1(·, x)‖ is
maximal, define q2 = E1(·, x2)/‖E1(·, x2)‖ and r∗2(x) = q∗2E1(·, x), and set E2 = E1 − q2r

∗

2 .
Each column of E2 is now orthogonal to both q1 and q2. Continuing in this fashion, we
construct a series corresponding to a factorization A = QR; the update equation is

Ek+1 = Ek − qk+1q
∗

k+1Ek, k = 0, 1, 2, . . . .(6.2)

If A has infinite rank, the process goes forever as described. If A has finite rank r, then Er

will become zero at step r, and in subsequent steps one may choose new points xj arbitrarily
together with arbitrary continuous orthonormal vectors qk and rows r∗k identically equal to
zero.

This algorithm of cmatrix modified Gram–Schmidt orthogonalization with column piv-
oting produces a quasimatrix R that is upper-triangular according to our definitions. Specif-
ically, the sequence of distinct numbers x1, x2, . . . has the property that row 2 of R has a
zero at x1, row 3 of R has zeros at x1 and x2, and so on. Moreover, R is diagonally real
maximal.

We can now state the general definition.

Definition 6.1. Let A be an [a, b] × [c, d] cmatrix. A QR factorization of A is a
factorization A = QR where Q is an [a, b]×∞ quasimatrix with orthonormal columns and
R is an upper-triangular diagonally real maximal ∞× [c, d] quasimatrix.

We are not aware of any previous literature on QR factorization of a cmatrix. The qr

command of Chebfun2 constructs the factorization from the LU factorization (up to a finite
precision of 16 digits), to be described in §8.

It is easily seen that the algorithm we have described produces quasimatrices Q and R
with the required continuous columns. What is not clear is whether the series represented
by the product QR converges absolutely and uniformly to A. This brings us to our first
substantial point of analysis. What smoothness conditions on A might ensure that the
quasimatrices Q and R that we have constructed correspond to a QR factorization A = QR?
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At present, we regret that we do not have any theorem in this direction. Fortunately, matters
are better for the SVD, LU, and Cholesky factorizations of the next three sections.

7. SVD of a cmatrix. Following Figure 7.1, we define the SVD of a cmatrix as follows.
Definition 7.1. Let A be an [a, b] × [c, d] cmatrix. A singular value decomposition

(SVD) of A is a factorization A = USV ∗ where U is an [a, b] × ∞ quasimatrix with
orthonormal columns, S is an ∞ × ∞ diagonal matrix with diagonal entries σ1 ≥ σ2 ≥
· · · ≥ 0, and V ∗ is an ∞× [c, d] quasimatrix with orthonormal rows.

A

= u u · · ·

U

σ    
  σ  

.

.

.

S

  v*
  v*

.

.

.

V ∗

Fig. 7.1. SVD of a cmatrix. This infinite series has a long history going back to Schmidt [22].

This corresponds to a series

A =

∞
∑

j=1

σjujv
∗

j ,(7.1)

which as usual is required to converge absolutely and uniformly. Just as the SVD of a
quasimatrix A can be computed from the quasimatrix QR decomposition A = QR followed
by the matrix SVD R = USV ∗, the SVD of a cmatrix A could be computed from the
cmatrix QR decomposition A = QR followed by the quasimatrix SVD R = USV ∗ (the
transpose of the SVD described in §4), at least up to a certain accuracy if R is truncated
to a finite number of rows.

Although our notation is new, the mathematics of the SVD of a cmatrix goes back a
century, beginning with the work of Schmidt [22, 27]. In particular, it is known that a small
amount of smoothness suffices to make the SVD series converge pointwise, absolutely, and
uniformly. To explain this effect, consider the classical approximation theory problem of a
continuous function f defined on the interval [−1, 1]. It is known that the Chebyshev series
of f , which expands f in Chebyshev polynomials, converges absolutely and uniformly if f
is Lipschitz continuous. If f has a νth derivative of bounded variation for some ν ≥ 1, the
error of the degree k partial sum of the Chebyshev series in the ∞-norm is O(k−ν), and if f
is analytic and bounded in the region bounded by the Bernstein ρ-ellipse around [−1, 1] for
some ρ > 1 (the image of the circle |z| = ρ under the mapping (z + z−1)/2), it is O(ρ−k).
(See Theorems 3.1, 7.2, and 8.2 of [32].) It follows that if a cmatrix A has such smoothness
with respect to either variable x or y, its rank k approximation errors {τk} of (2.7), hence
likewise its singular values {σk}, must converge at the same rate. (For the analytic case,
such an argument was possibly first published by Little and Reade [20].) The following
theorem summarizes some of this information.

Theorem 7.2. Let A be an [a, b] × [c, d] cmatrix that is Lipschitz continuous with
respect to x and y. Then an SVD of A exists, the singular values are unique, with σk → 0
and τk → 0 as k → ∞, and the singular vectors corresponding to simple singular values
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are also unique up to complex signs. Moreover, the partial sums Ak defined by (2.5) are
best rank k approximations to A, with errors ‖Ek‖ = ‖A− Ak‖ equal to the number τk+1

of (2.7). If A has a νth derivative with respect to either variable of bounded variation for
some ν ≥ 1, then the singular values and approximation errors satisfy σk, τk = O(k−ν). If
A is analytic and bounded with respect to either variable in the Bernstein ρ-ellipse scaled as
appropriate to [a, b] or [c, d], they satisfy σk, τk = O(ρ−k).

Proof. The existence and uniqueness of the SVD series is due to Schmidt in 1907 [22],
but his analysis does not fully meet our needs since he assumed only that A is continuous,
in which case the singular functions need not converge absolutely or uniformly (or indeed
pointwise). The situation where A has some smoothness was addressed by Hammerstein in
1923, who proved uniform convergence under an assumption that is implied by Lipschitz
continuity [15], and Smithies in 1938, who proved absolute convergence under a weaker
assumption essentially of Hölder continuity with exponent >1/2 [23, Theorem 14]. These
results establish the existence and uniqueness claims of this theorem. The rank k approxi-
mation property is due to Schmidt [22]; see also [35]. The proofs of the O(k−ν) and O(ρ−k)
results were outlined above.

If A is a nonnegative definite hermitian cmatrix, whose Cholesky factorizations we shall
consider in §9, then the SVD is known to exist without the extra assumption of Lipschitz
continuity (i.e., continuity of A is enough to ensure continuity and absolute and uniform
convergence of its finite-rank approximations). This is Mercer’s theorem [21].

Chebfun2 has an svd command that computes the SVD of a cmatrix down to the usual
Chebfun accuracy of about 16 digits. The algorithm uses the LU factorization (next section)
to reduce the problem to a quasimatrix SVD.

8. LU factorization of a cmatrix. Our final two factorizations involve both row
and column pivoting, with triangular quasimatrices on both sides. Both are implemented in
the Chebfun2 (two-dimensional) part of Chebfun developed by the first author. In fact, the
basic method by which Chebfun2 represents a function f(x, y) is cmatrix LU decomposition,
which was the starting motivation for us to write this article, and we shall say more about
this application at the end of this section.

To apply Gaussian elimination to a cmatrix, at each step we need to pick a row and
a column with which to eliminate. Since the cmatrix is continuous in both directions,
this necessitates the use of both row and column pivoting. (In the matrix computations
literature the standard term is complete pivoting.) The ingredients have appeared in the
earlier factorizations, so we can go directly to the definition, as depicted schematically in
Figure 8.1.

A

= · · ·

L

(0) (1)

(0)

(1)
.

.

.

U

Fig. 8.1. LU factorization of a cmatrix. Now both row and column pivoting are obligatory, and both
L and U have triangular structure. Again L has unit diagonal entries.
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Definition 8.1. Let A be an [a, b] × [c, d] cmatrix. An LU factorization of A is a
factorization A = LU where L is an [a, b] × ∞ unit lower-triangular diagonally maximal
quasimatrix and U is an upper-triangular diagonally maximal ∞× [c, d] quasimatrix.

We can describe the algorithm as follows.
Gaussian elimination (with row and column pivoting) for a cmatrix. Let A be an

[a, b]×[c, d] cmatrix, and begin with E0 = A. At step k = 1, find a pair (y1, x1) ∈ [a, b]×[c, d]
for which |E0(y, x)| is maximal and define ℓ1 = E0(·, x1)/E0(y1, x1), u

∗

1 = E0(y1, ·), and
E1 = E0 − ℓ1u

∗

1. (If E0(y1, x1) = 0, A is the zero cmatrix and ℓ1 can be any function in
C([a, b]) with |ℓ1(y)| ≤ 1 for all y and ℓ1(y1) = 1; u∗

1 will necessarily be zero.) The new
cmatrix E1 is zero in row y1 and column x1. At step k = 2, find a pair (y2, x2) ∈ [a, b]× [c, d]
for which |E1(y, x)| is maximal and define ℓ2 = E1(·, x2)/E1(y2, x2), u

∗

2 = E1(y2, ·), and
E2 = E1 − ℓ2u

∗

2. (If E1(y2, x2) = 0, E1 is the zero cmatrix and ℓ2 can be any function in
C([a, b]) with |ℓ2(y)| ≤ 1 for all y, ℓ2(y1) = 0, and ℓ2(y2) = 1; u∗

2 will necessarily be zero.)
This cmatrix E2 is zero in rows y1 and y2 and columns x1 and x2. We continue in this
fashion, generating the LU decomposition (5.2) step by step; the update equation is

Ek+1 = Ek − ℓk+1u
∗

k+1, k = 0, 1, 2, . . . .(8.1)

The quasimatrix U is the ∞ × [c, d] quasimatrix whose kth row is u∗

k, and it is upper-
triangular and diagonally maximal with pivot sequence x1, x2, . . . . The quasimatrix L is the
[a, b]×n quasimatrix whose kth column is ℓk, and it is unit lower-triangular and diagonally
maximal with pivot sequence y1, y2, . . . .

When does the series constructed by Gaussian elimination converge, so we can truly
write A = LU? One would imagine that a relatively mild smoothness condition on A ought
to be enough to ensure this, but at present, the only result we can prove is the following, in
which the smoothness assumption is far from mild.

Theorem 8.2. Let A be an [a, b]× [c, d] cmatrix. Suppose there is a constant M > 0
such that for each x ∈ [c, d], the function A(·, x) can be extended to a function in the
complex y-plane that is analytic and bounded in absolute value by M throughout the closed
region K consisting of all points at distance ≤ 2ρ(b − a) from [a, b] for some ρ > 1 (or
analogously with the roles of y and x reversed and also the roles of (a, b) and (c, d)). Then
the series constructed by Gaussian elimination converges absolutely and uniformly at the rate
‖Ek‖ = O(ρ−k), giving an LU factorization A = LU . If the factor L so computed takes
only values strictly less than 1 in absolute value off the diagonal, then the factorization is
unique.

Proof. Fix x ∈ [c, d], and for each step k, let ek denote the error function at step k,

ek = A(·, x) −
k

∑

j=1

ℓj(·)u
∗

j (x),(8.2)

a function of y ∈ [a, b]. The elimination process is such that ek is also analytic in K, with
magnitude at worst doubling at each step,

|ek(y)| ≤ 2kM, y ∈ K.(8.3)

Because of the elimination, ek has at least k zeros y1, . . . , yk in [a, b]. Let pk be the polyno-
mial (y−y1) · · · (y−yk). Then ek/pk is analytic in K, hence satisfies the maximum modulus
principle within K. For any y ∈ [a, b], this implies

|ek(y)| ≤ |pk(y)| sup
s∈∂K

|ek(s)|

|pk(s)|
≤ 2kM inf

s∈∂K

|pk(y)|

|pk(s)|
.(8.4)
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In this quotient of polynomials, each of the k factors in the denominator is at least 2ρ
times bigger in modulus than the corresponding factor in the numerator. We conclude
that |ek(y)| ≤ ρ−kM for y ∈ [a, b]. Since this error estimate applies independently of x
and y, it establishes uniform convergence. It also implies that the next term ℓk+1u

∗

k+1 in

the series is bounded in absolute value by ρ−kM , which implies absolute convergence since
∑

∞

k=0
ρ−kM < ∞.

We now turn to Chebfun2 and explain how it uses cmatrix LU factorization to represent
functions on rectangles.

The LU factorization of a cmatrix is an infinite series, and if the cmatrix is somewhat
smooth, one may expect the series to converge at a good rate. The principle of Chebfun2 is
that functions are represented to approximately 16-digit accuracy by finite-rank representa-
tions whose lengths adjust as necessary to achieve this accuracy. For functions defined on a
2D rectangle, the representation chosen is a finite section of the cmatrix LU factorization,

A ≈ Ã =
k

∑

j=1

ℓju
∗

j .(8.5)

For a typical function A arising in practice, k might be 10 or 100. In principle, Chebfun2
follows precisely the algorithm of cmatrix Gaussian elimination (thus using both row and
column pivoting) to find this approximation, though in practice, grid-based approximations
are employed to diminish the work that would be involved in computing the true global
extremum of |E(y, x)| at each step. For an outline of the basic idea, see [29], and for details
of the algorithms and numerical examples, see [28, 30].

The representation (8.5) is based on one-dimensional functions ℓj, functions of y, and
u∗

j , functions of x. In Chebfun2 these are represented as standard Chebfun objects, i.e.,
global polynomial interpolants through data in a Chebyshev grid in the interval [a, b] or
[c, d] that is adaptively determined for 16-digit accuracy. Thus in Chebfun2 calculations,
the philosophy of floating point arithmetic is replicated at three levels:

• numbers are represented by binary expansions of fixed length 64 bits;
• 1D functions are represented by Chebyshev polynomial interpolants of adaptively
determined degree;

• 2D functions are represented by LU approximations (8.5) of adaptively determined
rank.

The Chebfun2 technology is closely related to the low-rank matrix approximations (often
hierarchical, though not hierarchical in Chebfun2) developed over the years by many authors
including Bebendorf, Drineas, Goreinov, Maday, Mahoney, Martinsson, Oseledets, Rokhlin,
Savostyanov, Tyrtyshnikov, and Zamarashkin. Entries into this literature can be found
in [30] and in the books [4, 14]. A 2000 paper of Bebendorf is particularly close to our
work [3]. For applications to functions rather than matrices, besides Bebendorf, another set
of predecessors are Geddes and his students [5, 6, 11]. We are not aware of explicit previous
discussions of LU factorization of a cmatrix.

Thus in Chebfun2, every function starts from an LU factorization of finite rank, so that
cmatrices are reduced to finite-dimensional quasimatrices. On this foundation, exploiting
the finite rank, algorithms are built for further operations including QR and Cholesky
factorization, SVD, integration, differentiation, vector calculus, and application of integral
operators.

For matrices, the basic application of LU factorization is solution of a system of equa-
tions As = f , that is, LUs = f (we avoid using the usual letters x and b since they have
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other meanings in our discussion). If we set t = Us, this reduces to the two triangular
problems

Lt = f, Us = t,(8.6)

which can be solved successively first for t and then for s. Figure 8.2 sketches what the
analogous sequence looks like for the integral equation defined by an [a, b]× [c, d] cmatrix A
and a right-hand side f ∈ C([a, b]). Whether and when this process converges to a solution
s ∈ C([c, d]) is a question of analysis that we shall not consider.

· · ·

L

x
x
.

.

.

t

=

f

.

.

.

U s

=
x
x
.

.

.

t

Fig. 8.2. The cmatrix analogue (an integral equation) of the familiar matrix technique of solving
As = f via two problems Lt = f and Us = t. First an ∞×1 vector t is constructed element-by-element by
enforcing discrete conditions at the diagonal points y

1
, y

2
, . . . of L. Then a sequence of values is computed of

an [c, d]× 1 vector s ∈ C([c, d]) at the sample points x
1
, x

2
, . . . , the diagonal points of U . If these diagonal

points are dense in [c, d] and the sample values behave appropriately, a candidate solution s ∈ C([c, d]) is
determined.

9. Cholesky factorization of a cmatrix. For our final factorization, suppose A is a
hermitian cmatrix of dimensions [a, b]× [a, b]. We can always consider its LU factorization
as described in the last section. However, it is natural to wish to preserve the symme-
try, and this is where the idea of a Cholesky factorization applies. Here is the definition,
shown schematically in Figure 9.1. Using different language (“Geddes series”), Cholesky
factorizations of cmatrices have been studied by Geddes and his students [5, 6, 11].

=

A

· · ·

R ∗

(0) (1)

R

.

.

.

(0)

(1)

Fig. 9.1. Cholesky factorization of a hermitian nonnegative definite cmatrix.

Definition 9.1. Let A be an [a, b] × [a, b] square cmatrix. A Cholesky factorization
of A is a factorization A = R∗R where R is an ∞× [a, b] diagonally real maximal upper-
triangular quasimatrix.
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Suppose A is a cmatrix with a Cholesky factorization A = R∗R. Then A is hermitian,
and for any u ∈ C([a, b]) we may compute

u∗Au = u∗R∗Ru = (Ru)∗(Ru) ≥ 0.(9.1)

A hermitian cmatrix A which satisfies this inequality for every u ∈ C([a, b]) is said to
be nonnegative definite. We have just shown that if A has a Cholesky factorization, it is
nonnegative definite. We would like to be able to say that the converse holds too, so that
a hermitian cmatrix has a Cholesky factorization if and only if it is nonnegative definite.
Probably this is true under reasonably modest smoothness assumptions on A; what we can
prove below is more restricted.

The lower- and upper-triangular factors of a Cholesky factorization are conjugate trans-
poses of one another, and in particular, they have the same pivoting sequence. Consequently,
to select a pivot, the Cholesky algorithm searches only along the diagonal. We can describe
the algorithm as follows.

Cholesky algorithm (with pivoting) for a hermitian cmatrix. Let A be a hermitian
[a, b] × [a, b] cmatrix, and begin with E0 = A. At step k = 1, find a value x1 for which
E0(x, x) is maximal. (The diagonal entries are necessarily real since E0 is hermitian.) If
E0(x1, x1) < 0, A is not nonnegative definite; the algorithm terminates. Otherwise, let
γ1 be the nonnegative real square root of E0(x1, x1) and define r1 = E0(·, x1)/γ1 and
E1 = E0 − r1r

∗

1 . (If E0(x1, x1) = 0, A is the zero cmatrix and we take r1 to be the zero
function in C([a, b]).) The new cmatrix E1 is zero in row x1 and column x1. At step k = 2,
find a value (x2, x2) ∈ [a, b]× [a, b] for which E1(x, x) is maximal. If E1(x2, x2) < 0, A is not
nonnegative definite; the algorithm terminates. Otherwise, let γ2 be the nonnegative real
square root of E1(x2, x2) and define r2 = E1(·, x2)/γ2 and E2 = E1− r2r

∗

2 . This cmatrix E2

is zero in rows and columns x1 and x2. We continue in this fashion, generating the Cholesky
factorization step by step, with update equation

Ek+1 = Ek − rk+1r
∗

k+1, k = 0, 1, 2, . . . .(9.2)

The quasimatrix R is the ∞ × [a, b] quasimatrix whose kth row is r∗k, and it is upper-
triangular and diagonally real maximal with pivot sequence x1, x2, . . . .

We now turn to a theorem about Cholesky factorization of a cmatrix. This is a special
case of LU factorization, and Theorem 8.2 could be applied here again. However, a slightly
stronger result can be proved by a continuous analogue of an argument given by Harbrecht,
Peters, and Schneider [17]. Like Theorem 8.2, this theorem requires A to be analytic in a
sizeable region in the complex plane with respect to one or the other of its arguments, but
the region is slightly smaller than before. A convergence result was also announced in a talk
by Geddes [11], though without an explicit statement of the region of analyticity. We are
not aware of a journal publication giving details of Geddes’s result.

Theorem 9.2. Let A be an [a, b]× [a, b] hermitian cmatrix. Suppose there is a constant
M > 0 such that for each x ∈ [a, b], the function A(·, x) can be extended to a function in the
complex y-plane that is analytic and bounded in absolute value by M throughout the closed
region K bounded by the ellipse with foci a and b and semiaxes summing to 2ρ(b−a) for some
ρ > 1 (or analogously with the roles of y and x reversed). Then if A is nonnegative definite,
the series constructed by the Cholesky algorithm converges absolutely and uniformly at the
rate ‖Ek‖ = O(ρ−k), giving a Cholesky factorization A = R∗R. If A is not nonnegative
definite, the Cholesky algorithm breaks down with the square root of a negative number.

Proof. It is readily seen that if A is nonnegative definite, then this property is preserved
by steps of the Cholesky algorithm; thus if the algorithm breaks down, A must not be
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nonnegative definite. Conversely, if the algorithm does not break down, then as we are
about to show, it yields a Cholesky factorization A = R∗R, and as shown in (9.1), the
existence of such a factorization implies that A is nonnegative definite. From here on,
accordingly, we assume A is nonnegative definite.

Take k steps of the Cholesky algorithm. This yields a k×[a, b] upper-triangular quasima-
trix Rk and a corresponding rank k approximation Ak = R∗

kRk to A with error Ek = A−Ak.
If Ek = 0, the algorithm has produced a Cholesky factorization in the form of a finite sum,
and the assertions of the theorem hold trivially. Assume then Ek 6= 0. Let the diago-
nal entries of R, which are necessarily real and positive and nonincreasing, be denoted by
γ1 ≥ γ2 ≥ · · · ≥ γk > 0. Because of the pivoting in the Cholesky algorithm, we have

‖Ek‖∞ ≤ γ2
k+1 ≤ γ2

k,(9.3)

where ‖ · ‖
∞

denotes the maximum norm of a function over [a, b]× [a, b].
Now Rk is a k×[a, b] quasimatrix, but it contains within it the k×k matrix R̃k of entries

from columns 1, . . . , k, and this matrix is psychologically upper-triangular and diagonally
real maximal, with diagonal entries γ1 ≥ γ2 ≥ · · · ≥ γk > 0. It is readily seen that the entries
on the jth diagonal of the inverse of a unit triangular matrix are bounded in absolute value
by 2j. Similarly, for a triangular matrix with minimal diagonal entry γk, they are bounded

in absolute value by 2j/γk. By regarding R̃−1

k as the sum of its diagonals, it follows that

‖R̃−1

k ‖2 ≤
2k

γk
,

where ‖ · ‖2 is the matrix 2-norm. (A more precise estimate is given in Theorem 6.1 and the
remark that follows it in [18], with discussion of the relevant literature.) This implies

‖Ã−1

k ‖2 ≤
4k

γ2
k

,

where Ãk = R̃∗

kR̃k is the k × k hermitian positive definite submatrix of A extracted from

its rows and columns 1, . . . , k. Another way to say this is that the kth singular value of Ãk

(i.e., kth eigenvalue in absolute value) satisfies

σk(Ãk) ≥
γ2
k

4k
.

Thus by combining with (9.3), we get

‖Ek‖∞ ≤ 4kσk(Ãk) = 4k inf ‖Ãk − Ck−1‖2,

where the infimum is over k × k matrices Ck−1 of rank k − 1, or by switching from the

2-norm of Ãk − Ck−1 to its maximum entry,

‖Ek‖∞ ≤ k4k inf max
i,j

|(Ãk − Ck−1)i,j |.(9.4)

Now by the observations in the paragraph above Theorem 7.2, our analyticity assumption
implies that A can be approximated to accuracyO((4ρ)−k) by functions that are polynomials
of degree k − 2 with respect to one of the variables, and indeed to accuracy O((4ρ+ ε)−k)
for some sufficiently small ε > 0 since we assumed analyticity in a closed Bernstein ellipse.
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When such a function is sampled on a k × k grid, the resulting matrix is of rank at most
k − 1. Combining this observation with (9.4) completes the proof.

We reiterate that Theorem 9.2, like Theorem 8.2, is probably far from sharp, and in §6
we failed to state any theorem at all. Experience with Chebfun2 shows us that in practice,
QR, LU, and Cholesky factorizations all proceed without difficulty for cmatrices that have
just a minimal degree of smoothness.

Chebfun2 does not compute Cholesky factorizations in the manner we have described
in this section. Instead its chol command starts from the cmatrix LU factorization already
computed when a chebfun2 is first realized (of finite rank, accurate to 16 digits), and the
Cholesky factors are then obtained by appropriately rescaling the columns of L and rows
of U . Just as with matrices, chol applied to hermitian cmatrices proves a highly practical
way of testing for nonnegative definiteness (up to 16-digit precision).

10. Conclusion. The invention of computers in the mid-20th century sparked an ex-
plosion of algorithms based on discretization of functions and operators, bringing numerical
linear algebra to the heart of computational science, with matrix factorizations as its fun-
damental mathematical tool. In the 21st century, it will increasingly be possible to hide the
discretizations so that scientists can operate at the continuous level again. The continuous
analogues of matrix factorizations in this article, which spring from the two-dimensional
part of Chebfun known as Chebfun2, are proposed as a contribution to this trend.
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