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1. Rational arithmetic and a combinatorial explosion

The arithmetic operations +,−,×, / map rational inputs to rational outputs. Thus
in principle, as is well known, much of numerical computation could be carried out
exactly on a computer.

For example, suppose we wish to find a root of the quintic polynomial

p(x) = x5 − 2x4 − 3x3 + 3x2 − 2x − 1 .

The answer won’t be a rational number, but we can approach it very fast by
rational numbers using Newton’s method. If the initial guess is x(0) = 0, here is
what we find:

x(0) = 0 ,

x(1) = −1
2

,

x(2) = −22
95

,

x(3) = −11414146527
36151783550

,
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x(4) = − 43711566319307638440325676490949986758792998960085536
138634332790087616118408127558389003321268966090918625 ,

x(5) = − 7243914791768201761290013818789259730350038836047543931178041194343579260105802744696299
22974602373157587333399081666432003514775984720802108866006687478324948875098845198224797

22882064184585670017703551996316651611596343634562735299921308664663139405767412052875538
58228984471808467981536221568972260935865495325922571792991768547894449519518216876316931

2012406424843006982123545361051987068947152231760687545690289851983765055043454529677921
5683704659081440024954196748041166750181397522783471619066874148005355642107851077541250 .

There is a problem here! As approximations to an exact root of p, these rational
numbers are accurate to approximately 0, 0, 1, 3, 6, and 12 digits, respectively; the
number of good digits doubles at each step thanks to the quadratic convergence
of Newton’s method. Yet the lengths of the numerators are 1, 1, 2, 10, 53, and 265
digits, expanding by a factor of about 5 at each step since the degree of p is 5. After
three more steps we will have an answer x(8) accurate to 100 digits, but represented
by numerator and denominator each about 33125 digits long, and storing it will
require 66 kilobytes. If we were so foolish as to try to take 20 steps of Newton’s
method, we would need 16 terabytes to store the result.

This difficulty is a familiar one. Rational computations, like symbolic com-
putations in general, have a way of expanding exponentially. If nothing is done to
counter this effect, computations grind to a halt because of excessive demands on
computing time and memory.

2. Floating-point arithmetic

It is in this context that I would like to consider floating-point arithmetic. As is well
known, this is the idea of representing numbers on computers by, for example (in
the IEEE double precision standard), 64-bit binary words containing 53 bits (≈ 16
digits) for a fraction and 11 for an exponent. Konrad Zuse invented floating-point
arithmetic in Germany before and during World War II, and the idea was developed
by IBM and other manufacturers a few years later. The IEEE standardization came
in the mid-1980s.

There are two aspects to floating-point technology: a representation of real
(and complex) numbers via a subset of the rationals, and a prescription for rounded
arithmetic. These principles combine to stop the combinatorial explosion. Thus for
example, if two 53-bit numbers are multiplied, the result would typically require
about 106 bits to be represented exactly. Instead of accepting this, we round the re-
sult down to 53 bits again. More generally, most floating-point arithmetic systems
adhere to the following principle: when an operation +,−,×, / is performed on two
floating-point numbers, the output should be the exactly correct result rounded to
the nearest floating-point number. This implies that every floating-point operation
is exact except for a small relative error:

computed(x ∗ y) = (x ∗ y)(1 + ε) , |ε| ≤ εmachine . (2.1)

Here ∗ denotes one of the operations +,−,×, /, and we are ignoring the possibilities
of underflow or overflow. The IEEE double precision value of “machine epsilon” is
εmachine = 2−53 ≈ 1.1 × 10−16 [11].
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Equation (2.1) implies an important corollary:

computed(x ∗ y) = x̃ ∗ ỹ ,
|x − x̃|
|x| ,

|y − ỹ|
|y| ≤ εmachine . (2.2)

Thus each of the fundamental operations is backward stable, delivering the exactly
correct result for inputs that are slightly perturbed in a relative sense. The same
conclusion often holds for good implementations of other fundamental operations,
often unary instead of binary, such as √ , exp, or sin.

Floating-point arithmetic is not generally regarded as one of science’s sex-
ier topics. A widespread view is that it is an ugly though necessary engineering
compromise. We can’t do real arithmetic honestly, the idea goes, so we cheat a
bit—unfortunate, but unavoidable, or as some have called it, a “Faustian bar-
gain”. In abandoning exact computation we sell our souls, and in return we get
some numbers.

I think one can take a more positive view. Floating-point arithmetic is an
algorithm, no less than a general procedure for containing the combinatorial ex-
plosion. Consider the Newton iteration again, but now carried out in IEEE 16-digit
arithmetic:

x(0) = 0.00000000000000 ,

x(1) = −0.50000000000000 ,

x(2) = −0.33684210526316 ,

x(3) = −0.31572844839629 ,

x(4) = −0.31530116270328 ,

x(5) = −0.31530098645936 ,

x(6) = −0.31530098645933 ,

x(7) = −0.31530098645933 ,

x(8) = −0.31530098645933 .

It’s the same process as before, less startling without the exponential explosion but
far more useful. Incidentally, though the numbers above are printed in decimal,
what is really going on in the computer is binary. The exact value at the end, for
example, is not the decimal number printed but

x(8) = −0.01010000101101111001000011000001001111010100011110001binary .

Abstractly speaking, whenever we compute with rational numbers, we might
proceed like this:

Compute an exact result, then round it to a certain number of bits.

The problem is that the exact result is often exponentially lengthy. Floating-point
arithmetic represents an alternative idea:

Round the computation at every step, not just at the end.
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This strategy has proved overwhelmingly successful. At a stroke, combinatorial
explosion ceases to be an issue. Moreover, so long as the computation is not nu-
merically unstable in a sense understood thoroughly by numerical analysts, the
final result will be accurate. This is what one observes in practice and it is also the
rigorous conclusion of theoretical analysis of thousands of algorithms investigated
by generations of numerical analysts [8].

If there is a single essential reason for this good behavior, it is the phenomenon
of backward stability, encapsulated for a single operation ∗ in the condition (2).
More broadly, backward stability is the property that the solution obtained at
the end of a floating-point computation is the exactly (or nearly exactly) correct
solution for slightly perturbed data. This is a subtle and powerful idea, and it
takes some getting used to. If a system obeys condition (2) but no more, then
a subtraction of two nearly equal numbers x and y, for example, might yield
a result that doesn’t even have the right sign. This may seem bizarre, and in
fact, computers that adhere to the stronger condition (1) will not produce this
sign anomaly in a single subtraction. They may do so in a sequence of several
operations, however. It is a well established principle in numerical analysis that
although backward stability is not all one might wish for ideally, it is both realistic
to achieve and powerful enough to guarantee accuracy of the ultimate solution in a
wide range of computations. It is the “right” model for much of practical numerical
computation. The definitive reference on these matters is Higham’s Accuracy and
Stability of Numerical Algorithms [8]; in earlier decades the key references were
the two books by Wilkinson [14, 15].

The ideas we have been discussing are the basis of the whole field of compu-
tational science and played a part in the development of almost all the technology
that surrounds us. Jet planes, mobile phones, automobiles and office buildings are
all designed with floating-point arithmetic.

3. The chebfun system

My former student Zachary Battles and I have implemented a system whose aim
is to extend these ideas from numbers to functions [1–3]. Specifically, our system
works with smooth real or complex functions defined on [−1, 1]. An object of this
kind in our representation is called a chebfun. If f and g are chebfuns, we can
perform operations on them such as +,−,×, /, as well as other operations like exp
or sin. (For f/g, it is assumed that g is bounded away from 0.) The intention is not
that such computations will be exact. Instead the aim is to achieve the analogue
of (2.2),

computed(f ∗ g) = f̃ ∗ g̃ ,
‖f − f̃‖
‖f‖ ,

‖g − g̃‖
‖g‖ ≤ Cεmachine (3.1)

(again ignoring underflow and overflow), where C is a small constant, with a similar
property for unary operations. Here ‖·‖ is a suitable norm such as ‖·‖∞. Thus the
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aim of the chebfun system is normwise backward stable computation of functions.
We shall say more about the significance of (3.1) in §5.

The chebfun system is a class implemented in the language MATLAB. MAT-
LAB is object-oriented, enabling programmers to overload standard operations
such as +, −, ×, /, sin, and exp with appropriate alternatives. The operators
defined for chebfuns are as follows:

abs display ldivide ne real sum

angle end length norm rescale svd

chebfun eq log null roots tan

chebpoly erf log10 pinv semilogy tanh

cond erfc log2 plot sign times

conj erfcx max plus sin transpose

cos erfinv mean poly sinh uminus

cosh exp min power size uplus

ctranspose horzcat minus prod sqrt var

cumprod imag mldivide qr std vertcat

cumsum introots mrdivide rank subsasgn

diff isempty mtimes rdivide subsref

All of these are standard MATLAB commands except chebpoly, introots, and
the chebfun constructor itself. In MATLAB, such commands apply to discrete
vectors, or sometimes matrices, but in the chebfun system, they perform operations
on chebfuns. Thus for example log(f) and sinh(f) deliver the logarithm and the
hyperbolic sine of a chebfun f , respectively. More interestingly, sum(f) produces
the definite integral of f from −1 to 1 (a scalar), the analogue for continuous
functions of the sum of entries of a vector. Similarly, cumsum(f) produces the
indefinite integral of f (a chebfun), and introots(f) finds its roots in the interval
[−1, 1] (a vector of length equal to the number of roots, if any).

Mathematically, the basis of the system is Chebyshev expansions. Let Tj

denote the Chebyshev polynomial of degree j, Tj(x) = cos(j cos−1 x), which
equioscillates between j + 1 extrema ±1 on [−1, 1]. The Chebyshev series for any
Hölder continuous f ∈ C[−1, 1] is defined by [10, 12]

f(x) =
∞∑

j=0

′
ajTj(x) , aj =

2
π

∫ 1

−1

f(x)Tj(x)√
1 − x2

dx , (3.2)

where the prime indicates that the term with j = 0 is multiplied by 1/2. (These
formulas can be derived from the transplantation to x = cos θ of the Fourier
series for the 2π-periodic even function f(cos θ).) The chebfun system could have
been built on storing and manipulating coefficients {aj} for such expansions. As
it happens, it is built on the equivalent information of samples of f at Chebyshev
points,

xj = cos
jπ

n
, 0 ≤ j ≤ n ; (3.3)

we go back and forth to the representation (3.2) where convenient by means of
the Fast Fourier Transform (FFT). Each chebfun has a fixed finite n chosen to be
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“sufficiently large.” Given data fj = f(xj) at the Chebyshev points (3.3), other
values are determined by Salzer’s barycentric interpolation formula,

f(x) =
n∑

j=0

wj

x − xj
fj

/
n∑

j=0

wj

x − xj
, (3.4)

where the weights {wj} are defined by

wj = (−1)j δj , δj =

{
1/2, j = 0 or j = n ,
1, otherwise .

(3.5)

This method is known to be numerically stable [9].
If f is analytic on [−1, 1], its Chebsyhev coefficients {aj} decrease exponen-

tially. If f is not analytic but still several times differentiable, they decrease at
an algebraic rate determined by the number of derivatives. It is these properties
of rapid convergence that the chebfun system exploits to be a practical computa-
tional tool. Suppose a chebfun is to be constructed, for example by the constructor
statement

f = chebfun(’sin(x)’) .

What happens when this command is executed is that the system performs adap-
tive calculations to determine what degree of polynomial approximation is needed
to represent sin(x) to about 15 digits of accuracy. The answer in this case turns
out to be 13, so that our 15-digit approximation is actually

f(x) = 0.88010117148987x− 0.03912670796534x3 + 0.00049951546042x5

− 0.00000300465163x7 + 0.00000001049850x9 − 0.00000000002396x11

+ 0.00000000000004x13 .

This is a rather short chebfun; more typically the length might be 50 or 200.
For example, f = chebfun(’sin(50*x)’) gives a chebfun of length 143, and
f = chebfun(’exp(1./x.^2)’) gives a chebfun of length 198.

Having settled on representing functions by Chebyshev expansions and inter-
polants, we next face the question of how to implement mathematical operations
such as those summarized in the list of commands below (3.1). This is a very in-
teresting matter, and details of the various algorithms used in the chebfun system
can be found in [1] and [2]. For example, the integral of sum is calculated using the
FFT, a process equivalent to Clenshaw–Curtis quadrature [7]; zeros of chebfuns
are found by roots by a recursive subdivision of the interval combined with eigen-
value computations for Chebyshev companion matrices [5, 6]; and global maxima
and minima are located by max and min by first finding zeros of the derivative. All
these computations are fast and accurate even when the underlying polynomial
representations have orders in the thousands.
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4. Taming the combinatorial explosion

As mentioned earlier, when two 53-bit numbers are multiplied, an exact result
would typically require 106 bits, but floating-point arithmetic rounds this to 53.
The chebfun system implements an analogous compression for polynomial ap-
proximations of functions as opposed to binary approximations of numbers. For
example, suppose X is the chebfun corresponding to the linear function x. If we
execute the commands

f = sin(X) , g = cos(X) , h = f. ∗ g ,

we find that the chebfuns f and g have degrees 13 and 14, respectively. One
might expect their product to have degree 27, but in fact, h has degree only 17.
This happens because at every step, the system automatically discards Chebyshev
coefficients that are below machine precision—just as floating-point arithmetic
discards bits below the 53rd. The degree grows only as the complexity of the
functions involved genuinely grows, as measured on the scale of machine epsilon.

Here is an example to illustrate how this may contain the explosion of poly-
nomial degrees. The MATLAB program

f = chebfun(’sin(pi*x)’);

s = f;

for j = 1:15

f = (3/4)*(1 - 2*f.^4);

s = s + f;

end

plot(s)

begins by constructing a chebfun f corresponding to the function sin(πx), with
degree 19. Then it takes fifteen steps of an iteration that raises the current f to
the 4th power at each step. The result after about half a second on my workstation
is a rather complicated chebfun, of degree 3400, which looks like this:

−1 −0.5 0 0.5 1
5

6

7

8

9

10

The degree 3400 may seem high, but it is very low compared to what it would be
if the fourth powers were computed without dropping small coefficients, namely
19 × 415 = 20,401,094,656! Thus the complexity has been curtailed drastically,
yet with little loss of accuracy. In fact, the command introots(s-8) now takes
about 8 seconds to compute the twelve values in [−1, 1] at which s = 8:
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-0.99293210741191

-0.81624993429018

-0.79888672972343

-0.20111327027657

-0.18375006570983

-0.00706789258810

0.34669612041826

0.40161707348209

0.44226948963247

0.55773051036753

0.59838292651791

0.65330387958174

Applying the 15-step iteration to these numbers in ordinary floating-point arith-
metic gives the results

8.00000000000002

7.99999999999992

7.99999999999993

7.99999999999993

8.00000000000009

7.99999999999999

8.00000000000001

7.99999999999997

7.99999999999998

7.99999999999998

7.99999999999997

8.00000000000001

The fact that these numbers are so close to 8 reveals that the chebfun computation
has retained close to machine accuracy throughout.

What is the integral of s? The command sum(s) prints 15.26548382582675
in less than one-hundredth of of a second. All of these digits are correct, for the
exact answer is 15.26548382582674700943 . . . . This result was supplied to me by
Rob Corless based on 200-digit numerical calculations in Maple and confirmed by
Thomas Schmelzer using a different method implemented in Mathematica.

5. Normwise backward stability and condition (3.1)

There is no doubt that the chebfun system can do remarkable things. Computing
the integral of the function shown in the figure of the last section is a good example,
a difficult calculation carried out successfully in a fraction of a second, and the
reader is encouraged to download the system from [3] and explore other examples.
One would like to go beyond examples, however, and develop a rigorous and general
analysis of the prospects for a system like this. A good starting point would be
the normwise backward stability condition (3.1), and in particular, we believe it
is productive to focus on two questions:
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(I) How close does the chebfun system come to achieving (3.1)?

(II) What are the implications of this condition?

The answer to (I) appears to be that the chebfun system does satisfy (3.1), at
least for the basic operations +,−,×, /. This has not been proved formally and it
is a project for us in the near future to carry out a proof, making minor modifica-
tions in the code as necessary to make this possible. To explain how (3.1) can hold,
let us imagine as a slight simplification that each chebfun is represented precisely
by a finite Chebyshev series with floating-point coefficients (instead of values at
Chebyshev points). The property (3.1) for + and − appears to follow from the
corresponding properties for addition and subtraction of floating-point numbers,
together with the numerical stability of barycentric interpolation [9]. For multipli-
cation, the argument is only slightly more complicated, since again the operation
comes down to one of Chebyshev coefficients. The more challenging fundamental
operation is division, for in this case the quotient f/g is sampled pointwise at
various Chebyshev points and then a new Chebyshev series is constructed by the
adaptive process used generally for chebfun construction. It is not clear that the
current code contains safeguards enough to give a guarantee of (3.1), but if not,
we believe this will be achievable with small modifications.

It will also be important to consider analogues of (3.1) for other chebfun
operations besides +,−,×, /. These will have to be addressed on a case-by-case
basis, but it appears that in most cases such analogues will hold.

This brings us to (II), the question of the implications of (3.1). The easier
part of the answer, at least for numerical analysts familiar with backward error
analysis, is to understand exactly what the property (3.1) does and does not assert
about numerical accuracy. A crucial fact is that the bound involves the global
norms of the function f and g, not their values at particular points. Returning
to the problem of sign anomalies discussed at the end of §2, for example, we
may note that if two chebfuns f and g give (f − g)(x) < 0 at a point x, then
from (3.1) we cannot conclude that f(x) < g(x). We can conclude, however, that
there are nearby chebfuns f̃ and g̃ with f̃(x) < g̃(x). This is related to the “zero
problem” that comes up throughout the theory of real computation [17]. It is well
known that the problem of determining the sign of a difference of real numbers
with guaranteed accuracy poses difficulties. However, the chebfun system makes
no claim to overcome these difficulties: the normwise condition (3.1) promises less.

Does it promise enough to be useful? What strings of computations in a
system satisfying (3.1) at each step can be expected to be satisfactory? This is
nothing less than the problem of stability of chebfun algorithms, and it is a major
topic for future research. Certainly there may be be applications where (3.1) is
not enough to imply what one would like, typically for reasons related to the
zero problem. For example, this may happen in some problems of geometry, where
arbitrarily small coordinate errors may make the the difference between two bodies
intersecting or not intersecting, or between convex and concave. The aim of the field
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known as Exact Geometric Computation is to delineate problems that face such
challenges and to find ways to overcome them [16]. On the other hand, generations
of numerical analysts have found that such difficulties are by no means universal,
that the backward stability condition (2.2) for floating-point arithmetic is sufficient
to ensure success for many scientific computations. In the future our aim will be
to determine how far this conclusion carries over to condition (3.1) for chebfuns.

6. Discussion

The chebfun class is a powerful system for dealing with smooth functions on [−1, 1],
and Zachary Battles’ successor Ricardo Pachón is in the process of extending it
to more realistic situations such as piecewise-continuous functions on arbitrary
intervals and functions with poles. With further research and program development
we hope soon to prove that the system does indeed live up to the model (3.1), as
discussed in §5. The deeper point of this brief article, however, is to put forward a
vision that is not tied specifically to Chebyshev expansions or to other details of
the chebfun system. The vision is that a good deal of what is normally regarded
as “symbolic” computing can be done numerically, with a potentially vast gain in
computer time and memory. And what does “numerically” ultimately mean? It
means pruning an algebraic representation at every step rather than just once at
the end of all the steps.
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