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Householder triangularization of a quasimatrix
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A standard algorithm for computing the QR factorization of a matrixA is Householder triangulariza-
tion. Here this idea is generalized to the situation in whichA is a quasimatrix, that is, a ‘matrix’ whose
‘columns’ are functions defined on an interval [a, b]. Applications are mentioned to quasimatrix least
squares fitting, singular value decomposition and determination of ranks, norms and condition numbers,
and numerical illustrations are presented using the chebfun system.

Keywords: Householder triangularization; QR factorization; chebfun; quasimatrix; singular value decom-
position.

1. QR factorization and Householder triangularization

Let A be anm × n matrix, wherem> n. A (reduced) QR factorization ofA is a factorization

A = QR,
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, (1.1)

whereQ is m×n with orthonormal columns andR is upper triangular. Here and in subsequent equations
we illustrate our matrix operations by schematic pictures in whichx denotes an arbitrary entry,r denotes
an entry of an upper triangular matrix,q denotes an entry of an orthonormal column and a blank denotes
a zero. QR factorization is a fundamental step for all kinds of computations in numerical linear algebra,
including least squares, eigenvalues and singular value decomposition (SVD) (Björck, 1996; Golub &
Van Loan, 1996; Trefethen & Bau, 1997; Stewart, 1998b).

One way to compute a QR factorization is by Gram–Schmidt or modified Gram–Schmidt factoriza-
tion, a process oftriangular orthogonalization. This is fast and straightforward, but the calculation may
break down with division by zero ifA is rank deficient, that is, if its column space has dimension less
thann. Even if A has full rank, the matrixQ computed in floating point arithmetic may be far from
orthogonal ifA is ill conditioned, and this may have an adverse effect on the accuracy of subsequent
computations (Stewart, 1998b).

Householder(1958) introduced an alternative approach to (1.1) based onorthogonal triangulariza-
tion, which has become one of the standard tools of computational science. At the first step a unitary
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matrix H1 is applied that introduces zeros below the diagonal in the first column:
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The second step applies another unitary matrixH2 that leaves the first row unchanged and introduces
zeros below the diagonal in the second column:
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After n steps,A has become upper triangular:

Hn ∙ ∙ ∙ H2H1A = T,
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(If m = n then thenth step is not needed. In these formulas we may takeHn = I .) Multiplying on the
left by H∗ = H1H2 . . . Hn now gives

A = H1H2 ∙ ∙ ∙ HnT,
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We have writtenHk instead ofH∗
k since the two are the same because the Householder matricesHk are

self-adjoint as well as unitary. In fact,Hk is areflection matrixthat mapsCn to itself by reflection across
an (n − 1)-dimensional hyperplane. This interpretation makes it clear thatH2

k = I , i.e., H−1
k = Hk.

Algebraically,Hk takes the form

Hk = I − 2vkv
∗
k , (1.4)

wherevk is a unit vector, i.e.,‖vk‖ = 1. (Here∗ is the conjugate transpose and‖ ∙ ‖ is the 2 norm.)
To multiply a Householder reflection by a vector or matrix, one always uses this form rather than an
explicit entrywise representation, and that is why our schematic figures showH andH∗ as boxes with
no entries inside them.

For any unit vectorvk (1.4) defines a reflection in the sense just defined. In the application to
QR factorizationvk is chosen orthogonal to the unit vectorse1, . . . , ek−1, i.e., with zeros in positions
1, . . . , k − 1, and this choice ensures that the space spanned by these vectors lies in the hyperplane that
is invariant underHk, which in turn ensures that zeros introduced at one step are not destroyed at later
steps.
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The factorization (1.3) is almost (1.1), but we are not quite there yet since the matricesH∗ andT on
the right have dimensionsm× m andm× n rather thanm× n andn × n. To achieve the latter we need
to delete all but the firstn columns ofH∗ and all but the firstn rows of T , which will have no effect
on the product since the deleted rows are all zero. But ifH∗ = H1 ∙ ∙ ∙ Hn is never actually formed as
a matrix then how do we delete some of its columns? We give an answer that will make the transition
to quasimatrices particularly convenient as well as clarifying the treatment of matrices with complex
entries. We shall factorT in (1.2) into a product of three matrices: anm × n ‘rectangular identity’E
whose columns are the unit vectorse1, . . . , en, an n × n ‘sign matrix’ S = diag(s1, . . . , sn) whose
diagonal entries are real or complex numbers with|sj | = 1 and ann × n upper triangular matrixR
whose diagonal entries are real and non-negative:

Hn ∙ ∙ ∙ H2H1A = E SR,
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This formulation makes it clear that we can compute them × n matrix Q by applying Hn, . . . , H1
successively toE S:

Q = H1 ∙ ∙ ∙ HnE S,
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2. Generalization to quasimatrices

Our subject in this note is the generalization of these ideas to the situation in whichA is not a matrix
but aquasimatrixdefined on an interval [a, b]. By this we mean an ‘∞ × n matrix’ (a more specific
term would be ‘[a, b] × n matrix’) whose ‘columns’ are functions ofx ∈ [a, b]. Thus A represents a
linear map fromCn to L2[a, b]. The term quasimatrix comes fromStewart(1998a), and the same idea
was introduced with different terminology inde Boor(1991) andTrefethen & Bau(1997, p. 52). We
assume that each column lies inL2[a, b], so that inner products make sense, which we shall write in
vector notation asv∗w. Then‖ ∙ ‖ is now theL2 norm on [a, b]. For example, one might consider the
quasimatrix with columns given by the functions 1, x, x2, . . . , xn−1 defined on [−1, 1]. The columns of
Q in its QR factorization will be multiples of the Legendre polynomialsP0, . . . , Pn−1, and the first few
entries ofR are r11 = 21/2, r12 = 0, r22 = (2/3)1/2, r13 = (2/9)1/2, r23 = 0 andr33 = (8/45)1/2.

If A is a quasimatrix then the QR factorization formula (1.1) still makes sense. NowQ, like A, has
dimensions∞ × n, and it has orthonormal columns. In our schematic pictures a quasimatrix whose
columns are functions is indicated by a rectangle containing vertical lines, with a ‘q’ in the middle if the
functions are orthonormal:

A = QR, q q q q
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A Gram–Schmidt computation goes exactly as before, with discrete inner products replaced by con-
tinuous ones, and is susceptible to the same difficulties ifA is ill conditioned or rank deficient.
Gram–Schmidt orthogonalization of quasimatrices was discussed inBattles & Trefethen(2004) and
Battles(2006).

Another way to compute the QR decomposition ofA would be to formA∗A, which is ann×n matrix,
and then find its Cholesky factorizationA∗A = R∗R by standard methods. One then hasQ = AR−1 at
least if A has full rank so thatR is nonsingular. Like Gram–Schmidt orthogonalization, this method has
difficulties if A is ill conditioned since it ‘squares the condition number’. On the other hand, it provides
an easy proof of a basic proposition: if the quasimatrixA has rankn andR has positive diagonal entries
then the QR factorization is unique.

Our aim is to compute (2.1) by the numerically more stable method of Householder reflections,
which has apparently not been done before. The very first step introduces the crucial question: What
could it mean to map a function onto another function that is ‘zero below the diagonal’? The answer we
propose is that one should start from a quasimatrix analogue of (1.5):

Hn ∙ ∙ ∙ H2H1A = E SR, e e e e
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HereE will be an∞ × n quasimatrix, fixed in advance, with orthonormal columns{ej }, andS will be
an n × n sign matrix as before. There is no need forE to have any particular relationship toA, such
as identical or similar column spaces. Just as in the matrix case, the Householder reflectors connecting
A and E can reorient the vector space in arbitrary ways. In practice, we takeej to be a multiple of
the ( j − 1)th Legendre polynomialPj −1(x), scaled to [a, b]. The Householder reflectorHk will be a
self-adjoint operator acting onL2[a, b], chosen so as to map a certain function to another function of
equal norm in the space spanned bye1, . . . , ek. Again, the signs{sj } will be chosen so that the diagonal
entries ofR are real and non-negative.

The first step of Householder quasimatrix triangularization looks like this:
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A Householder reflectorH1 has been applied toA, changing all of its columns and, in particular, chang-
ing the first column tor11s1e1, followed by making all of the remaining columns orthogonal to the first.
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The second step looks like this:
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The reflectorH2 has now changed the columns 2 ton, converting column 2 tor12s1e1 + r22s2e2. The
process continues in this fashion until the form (2.2) is achieved at stepn.

The precise formulas for these computations are as follows for each stepk from 1 ton. The outer
product notationvv∗ denotes the operator that maps a functionw to v(v∗w). We have

x = A( :, k), rkk = ‖x‖, sk = −sign(e∗
kx), y = skrkkek, v =

y − x

‖ y − x‖
, Hk = I − 2vv∗, (2.3)

A( :, j ) = Hk A( :, j ), rkj = e∗
k A( :, j ), A( :, j ) = A( :, j ) − rkjek, k + 16 j 6 n. (2.4)

(The function sign(z) returnsz/‖z‖ if z 6= 0, and 1 ifz = 0.) The operations of (2.4) subtract off
projections onto the current vectorek from the remaining columns ofA. The functionx in (2.3) is
accordingly orthogonal toe1, . . . , ek−1, and this implies that the same property holds forv, which
ensures that the application ofHk leaves the firstk − 1 columns ofA unchanged.

After triangularization is completed, the computation ofQ if it is needed goes as in (1.6):

Q = H1 ∙ ∙ ∙ Hn E S, q q q q e e e e

s
s

s
s . (2.5)

The notationH∗ makes sense sinceH1 ∙ ∙ ∙ Hn is indeed the adjoint ofH in L2[a, b].
We now present our algorithm written in MATLAB-style pseudocode. The input is an∞ × n quasi-

matrix A, and the output is an∞ × n orthonormal quasimatrixQ and ann × n upper triangular matrix
R with non-negative diagonal entries satisfying (2.1). One difference from the description above is that,
instead of accumulating the signssk, we replaceek by skek at stepk before moving on to stepk + 1.
Another is that an additional line has been added to ‘improve orthogonality’ of the direction vectorvk

to the previous target vectorse1, . . . , ek−1. In exact arithmetic this would not be needed, but in floating
point arithmetic we have found that it makes a significant difference.

HOUSEHOLDER TRIANGULARIZATION OF AN∞ × n QUASIMATRIX A

E = ∞ × n quasimatrix with orthonormal columns
V = storage allocation for∞ × n quasimatrix
R = storage allocation for n× n matrix
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for k = 1:n TRIANGULARIZATION

e = E( :, k) target for this reflection

x = A( :, k) vector to be mapped toe

ρ = ‖x‖, R(k, k) = ρ

α = e∗x

if α = 0, s = 1, else s = −α/‖α‖, end compute real or complex sign

e = se, E( :, k) = e modify e to take account of sign

v = ρe− x vector defining reflection

v = v − E( :, 1:k−1)(E( :, 1:k−1)∗v) improve orthogonality

σ = ‖v‖
if σ = 0, v = e, elsev = v/σ , end If zero column, arbitrary reflection

V( :, k) = v store Householder vector

J = (k+1:n) convenient abbreviation

A( :, J ) = A( :, J ) − 2v(v∗A( :, J )) apply reflection

r T = e∗A( :, J )

R(k, J ) = r T entries of rowk of R

A( :, J ) = A( :, J ) − erT

end
Q = E

for k = n:−1:1 FORMATION OF Q

v = V( :, k) retrieve Householder vector

J = (k :n) convenient abbreviation

Q( :, J ) = Q( :, J ) − 2v(v∗Q( :, J )) apply reflection

end

3. Least squares and pseudoinverse

The most basic application of QR factorization is to the solution of least squares problems (Björck,
1996). The techniques used here carry over from matrices to quasimatrices with virtually no changes.
Given a quasimatrixA of full rank and a functionf , both defined on [a, b], we seek a vectorc such
that

‖Ac− f ‖ = minimum. (3.1)

As first worked out fully inGolub(1965), the solution can be obtained by solving the triangular system
of equations

Rc= Q∗ f, (3.2)

with Q and R defined by (2.1). For this computation it is not necessary to formQ. It is enough if the
Householder vectorsvk are stored and then used to computeQ∗ f . One can also write (3.2) asc = A+ f ,
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whereA+ is thepseudoinverseof A defined by

A+ = R−1Q∗. (3.3)

The pseudoinverse is ann × ∞ quasimatrix: it hasn ‘rows’ each of which is a function on [a, b].

4. SVD and related computations

Once the QR factorization (2.1) of a quasimatrixA is known, it is an easy matter to compute its SVD
A = UΣV∗. FollowingBattles & Trefethen(2004), we first compute the SVDU1ΣV∗ of R, a standard
problem sinceR is an ordinary matrix. We then setU = QU1, giving

A = (QU1)ΣV∗ = UΣV∗. (4.1)

HereU is ∞ × n, Σ is n × n with diagonal form and nonincreasing non-negative diagonal entries{σ j }
andV is n × n and unitary. This also gives us an alternative and numerically more stable formula for
the pseudoinverse:

A+ = VΣ−1U∗. (4.2)

As in the case of QR factorization, an alternative but less stable way to compute the SVD would be
to computeA∗A and then work from the SVD of thisn × n matrix.

From the SVD ofA we can extract its norm

‖A‖ = σ1 (4.3)

and its condition number

κ(A) = σ1/σn, (4.4)

whereσ1 and σn denote the largest and smallest singular values, respectively. Geometrically, these
numbers have their usual interpretations as the lengths of the largest and smallest semiaxes of the
n-dimensional hyperellipsoid that is the image underA of the unit ball inCn. The only difference from
the matrix case is that this hyperellipsoid, while still itself finite dimensional, is now a subset of the
infinite-dimensional spaceL2[a, b]. If some of the singular values are zero thenA is rank deficient, and
its rank can be determined by counting the nonzero singular values. For a numerical rank determination
algorithm one introduces a tolerance defining an approximate notion of ‘nonzero’.

The method of computation of the SVD summarized in (4.1), making use of a preliminary QR fac-
torization, is in the matrix case sometimes known as the ‘Lawson–Hanson–Chan SVD’ (Lawson &
Hanson, 1974; Chan, 1982; Trefethen & Bau, 1997). For m × n matrices it is recommended in cases
with m > 5n/3, so it seems natural that it should be appropriate in the quasimatrix case ‘m = ∞ ’.
On the other hand, it is also possible to devise a quasimatrix SVD algorithm of the ‘Golub–Kahan’
variety in which one proceeds directly to bidiagonal form without a preliminary QR factorization
(Golub & Kahan, 1965). This would involven quasimatrix Householder reflections on the left, as we
have used already, interleaved withn − 1 matrix Householder reflections on the right. IfG∗ de-
notes the product of these matrix Householder reflections then the form that results from Golub–Kahan
bidiagonalization is

H A = E BG∗, (4.5)
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whereB is ann × n upper bidiagonal matrix andG is ann × n unitary matrix of dimensionn × n.
If U1ΣV∗

1 is an SVD ofB then the SVD ofA can be written as

A = (H∗E U1)Σ(GV1)
∗. (4.6)

5. Further algorithmic details

5.1 Operation counts

For matrix QR decomposition the Gram–Schmidt algorithm requires approximatelyn2/2 inner products
and approximatelyn2/2 saxpys (scalar times vector plus vector). Form � n this corresponds to a total
operation count of approximately 2mn2 flops, where a flop is an addition, subtraction, multiplication or
division. Householder triangularization costs the same if you only needR, but if Q must be formed as
well then the operation counts double to approximatelyn2 inner products and approximatelyn2 saxpys.

In the quasimatrix case the Gram–Schmidt numbers are again approximatelyn2/2 inner products
and approximatelyn2/2 saxpys (scalar times vector plus vector). Of course, in this context the mean-
ing of an inner product or a saxpy is different since functions and quadrature are involved rather than
discrete vectors. As for Householder triangularization of a quasimatrix, the second phase of forming
Q again requires approximatelyn2/2 inner products and approximatelyn2/2 saxpys. The triangulariza-
tion, however, is three times as expensive as before at least with the extra line to ‘improve orthogonality’,
requiring approximately 3n2/2 inner products and approximately 3n2/2 saxpys. Thus, roughly speak-
ing, whereas Householder QR factorization is twice as expensive as Gram–Schmidt for matrices, it is
three or four times as expensive for quasimatrices. The reason is the extra orthogonalization operations
needed at two points in the algorithm, which for matrices are bypassed since they are implied by the
sparsity structure. We suspect it may be possible to improve these figures.

5.2 Sparsity and Givens rotations

For matrix QR factorization an alternative to Householder reflections is Givens rotations, which act on
two rows at a time rather thanO(m) rows. Though more expensive when the matrix is dense, this
technique may have advantages when the matrix is sparse. Now, what might it mean to say that a
quasimatrixA is sparse? A possible answer would be that each column ofA is orthogonal to most
columns ofE, assuming thatE is specified in advance. Perhaps there may be problems where this
property arises and analogues of Givens operations would be useful, but we have not pursued this idea.

6. Chebfun examples

This work was motivated by the chebfun software system, which makes it possible to compute with
quasimatrices in MATLAB (Driscoll et al., 2008). Chebfun version 1 used Gram–Schmidt orthogo-
nalization, but beginning with Chebfun version 2.0308 in July 2008 we have replaced Gram–Schmidt
orthogonalization by Householder triangularization in all QR factorizations. We finish with a few exam-
ples involving QR factorization and SVD computations in this system.

First, here is a computation of the norm and condition number of the set of functions 1, x, x2, . . . , x5

over [−1, 1]:

>> x = chebfun(’x’,[-1 1]);



TRIANGULARIZATION OF A QUASIMATRIX 9 of 11

>> A = [1 x x.ˆ2 x.ˆ3 x.ˆ4 x.ˆ5];
>> norm(A)
ans = 1.532062889375341
>> cond(A)
ans = 43.247975704139819

If [ −1, 1] is changed to [0, 1] then the norm decreases to 1.272359956507724 and the condition number
increases to 3866.659881620226.

Similarly, suppose that we want to know the dimension of the space spanned by the functions 1,
sin2(x) and cos2(x). The following result comes out the same with either of the choices of domain ofx
mentioned above:

>> rank([1 sin(x).ˆ2 cos(x).ˆ2])
>> ans = 2

Here is an example involving piecewise smooth chebfuns. The commands

x = chebfun(’x’); A = [];
for j = 0:6

A = [A max(0,1-abs(3 * (x+1)-j))];
end

construct an∞ × 7 quasimatrix on [−1, 1] whose columns correspond to triangular hat functions of
width 1/3 centred at−1, −2/3, −1/3, . . . , 1. Linear combinations of these functions are piecewise
linear functions on [−1, 1] with breakpoints at−2/3, −1/3, . . . , 2/3. The following code computes the
least squares fit by such piecewise linear functions tof (x) = ex sin(6x) and produces the plot shown
in Fig. 1:

f = exp(x). * sin(6 * x);
c = A\f;

FIG. 1. Quasimatrix least squares fit by piecewise linear functions computed with the ‘\ ’ command in the chebfun system. The
residual norm minimized is defined by integrals, not point values. This quasimatrix has condition number 1.974212678743394.
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ffit = A * c;
plot(f), hold on, plot(ffit,’--’)

Here is the norm of the residual:

>> norm(f-ffit)
ans = 0.301000501411522

All of these computations are continuous, involving integrals, not just point values.
Finally, we recall that the advantage of Householder triangularization over Gram–Schmidt orthog-

onalization is that it delivers an orthonormal quasimatrixQ, even whenA is rank deficient. We can
verify this numerically by considering the highly rank-deficient quasimatrix consisting of two copies of
A placed beside each other:

>> rank(A)
ans = 7
>> AA = [A A];
>> rank(AA)
ans = 7
>> [Q,R] = qr(AA);
>> cond(Q)
>> ans = 1.000000000000002
>> norm(AA-Q * R)
ans = 8.400509803176009e-16

The chebfun system is freely available, together with users guides and sample codes and other
materials, at http://www.comlab.ox.ac.uk/chebfun.

7. Discussion

What is the essential algorithmic difference between factorizations of matrices and quasimatrices? Per-
haps the main answer has to do with the notion of zero entries and associated matters of structures and
sparsity. With ordinary matrices, the problem has already been formulated in the basise1, e2, . . . : to
find out if a vector has zero component in a directionej we need only check if a certain number is zero.
With quasimatrices, there is no basis givena priori. We must choose one to work with in practice—here
we have taken suitably scaled Legendre polynomials—but the check of whether a function has zero
component in a directionej now requires the computation of an inner product.

This note is a contribution to a larger project: to reconstruct the subject of numerical linear algebra
in the context of functions rather than vectors. The project has an intellectual side, as it forces us to
confront fundamental questions of the deeper meanings of the algorithms that we know and trust so
well. It also has a practical side, a long-term enterprise indeed, which is to enable computational science
and engineering to work directly with functions, with details of discretizations hidden away just as
details of floating point arithmetic are today hidden away when we work with numbers.
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