In the field of optics, integral operators arise that have a complex symmetric (but not Hermitian) oscillatory kernel. An example is the following linear Fredholm operator $L$ associated with the names of Fox and Li (also Fresnel and H. J. Landau):

$$ v(x) = \sqrt{iF/\pi} \int_{-1}^1 K(x,s) u(s) ds. $$

$L$ maps a function $u$ defined on $[-1,1]$ to another function $v = Lu$ defined on $[-1,1]$. The number $F$ is a positive real parameter, the Fresnel number, and the kernel function $K(x,s)$ is

$$ K(x,s) = \exp(-iF(x-s)^2). $$

To create the operator in Chebfun, we define the kernel and use the fred function to build $L$:

F = 64*pi;                                     % Fresnel number
K = @(x,s) exp(-1i*F*(x-s).^2 );               % kernel
L = sqrt(1i*F/pi) * chebop(@(u) fred(K,u));    % Fredholm integral operator

Computing the $80$ eigenvalues of largest complex magnitude requires just a call to eigs with the 'lm' option:

tic, lam = eigs(L,80,'lm'); toc
Elapsed time is 12.891044 seconds.

A beautiful pattern emerges when we plot the results:

x = chebfun('x');
clf, plot(exp(1i*pi*x),'--r')
hold on, plot(lam,'k.','markersize',14)
title('largest 80 eigenvalues of Fox-Li operator')
axis equal, axis(1.05*[-1 1 -1 1]), hold off

For a remarkable analysis of such patterns, see [1].

References

  1. A. Boettcher, H. Brunner, A. Iserles and S. P. Norsett, On the singular values and eigenvalues of the Fox-Li and related operators, New York Journal of Mathematics, 16 (2010), 539-561.

  2. T. A. Driscoll, , Journal of Computational Physics, 229 (2010), 5980-5998.

  3. A. G. Fox and T. Li, Resonant modes in a maser interferometer, Bell System Technical Journal, 40 (1961), 453-488.

  4. L. N. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, Princeton University Press, 2005 (Chapter 60).