LW = 'linewidth'; dom = [0 2*pi];

Consider the periodic Sturm-Liouville eigenvalue problem

$$ -\frac{d}{dx}\Big[p(x)\frac{du}{dx}\Big]+q(x)u=\lambda w(x)u, $$

on $[0,2\pi]$, where $w(x)>0$ and $q(x)$ are periodic and continuous complex-valued functions, and $p(x)>0$ is a periodic ontinuously differentiable complex-valued function. We look for complex eigenvalues $\lambda$, and peridoic complex-valued functions $u(x)$ with two continuous derivatives.

The spectral theorem for periodic Sturm-Liouville eigenvalue problem [1, Theorem 5.28] states that there exists a basis of periodic and real-valued continuous functions on $[0,2\pi]$ that consists of eigenfunctions $u_n(x)$ of the periodic Sturm-Liouville eigenvalue problem. They are orthonormal with respect to the inner product

$$ \int_0^{2\pi}\overline{u_m(x)}u_n(x)w(x)dx, $$

and have real and discrete eigenvalues $\lambda_0<\lambda_1\leq\lambda_2<\lambda_3\leq\lambda_4\ldots$, of multiplicity at most two for $n\geq1$ and one for $n=0$, with $\lambda_n\rightarrow\infty$ as $n\rightarrow\infty$. Moreover, let $\Delta(\lambda)$ be the Hill discriminant defined by

$$ \Delta(\lambda) = \frac{c(2\pi) + p(2\pi)s'(2\pi)}{2}, $$

where $c(x)$ and $s(x)$ are the solutions of the Sturm-Liouville equations with initial conditions $c(0)=1$, $p(0)c'(0)=0$ and $s(0)=0$, $p(0)s'(0)=1$. The eigenvalues $\lambda_n$ are precisely those numbers $\lambda$ for which $\Delta(\lambda)$ takes the value 1.

Let us first review two famous examples.

If $p(x)=w(x)=1$, $q(x)=0$, on $[0,2\pi]$, we obtain

$$ -u'' = \lambda u, $$

with eigenfunctions $A\cos(\sqrt{\lambda_n}x)+B\sin(\sqrt{\lambda_n}x)$, and discrete and real eigenvalues $\lambda_n=n^2,n\geq0$, double for $n\geq1$ and simple for $n=0$. We can solve it in Chebfun as follows with the eigs command.

L = chebop(@(u) -diff(u, 2), dom);
L.bc = 'periodic';
k = 5; % number of eigenvalues we want
[V, D] = eigs(L, k);
figure, plot(V, LW, 2)

The computed eigenvalues are very close to the exact ones:

Dexact = [0 1 1 4 4]';
norm(diag(D) - Dexact, inf)
ans =
     1.274536032269680e-13

The eigenfunctions are periodic

V{1:end}
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]        5       0.4      0.4 
Epslevel = 1.000000e-10.  Vscale = 3.989423e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]        5     -0.56    -0.56 
Epslevel = 1.000000e-10.  Vscale = 5.615557e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]        5    -0.054   -0.054 
Epslevel = 1.000000e-10.  Vscale = 5.508979e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]        5      0.11     0.11 
Epslevel = 1.000000e-10.  Vscale = 5.600760e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]        5      0.55     0.55 
Epslevel = 1.000000e-10.  Vscale = 5.536788e-01.

and satisfy the differential equation to high precision:

norm(L*V - V*D, inf)
ans =
     1.374311367821037e-13

If $p(x)=w(x)=1$, $q(x)=2q\cos(2x)$, we obtain the Mathieu equations

$$ -u'' + 2q\cos(2x)u = \lambda u. $$

They have been studied by the French mathematician Emile Mathieu to model the vibrations of elliptical drumheads [2]. Given $q\neq 0$, the eigenvalues $\lambda(q)$ associated with periodic eigenfunctions are called the characteristic values of the Mathieu equations. It can be shown that there exists a countably infinite set of real characteristic values $\lambda_n(q),n\geq0$, double for $n\geq1$ and simple for $n=0$, with elliptic cosine and sine eigenfunctions, the Mathieu functions.

q = 2;
L = chebop(@(x, u) -diff(u, 2) + 2*q*cos(2*x).*u, dom);
L.bc = 'periodic';
k = 5; % number of eigenvalues we want
[V, D] = eigs(L, k);
figure, plot(V, LW, 2)

The computed eigenvalues are very close to the eigenvalues obtained with WolframAlpha:

Dwolfram = [ -1.513956885056520;
             -1.390676501225323;
              2.379199880488686;
              3.672232706497191;
              5.172665133358294 ];
norm(diag(D) - Dwolfram, inf)
ans =
     8.526512829121202e-14

Again, the eigenfunctions are periodic

V{1:end}
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]       29      0.11     0.11 
Epslevel = 1.000000e-10.  Vscale = 6.469300e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]       29  -4.8e-14 -4.8e-14 
Epslevel = 1.000000e-10.  Vscale = 6.678125e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]       29     -0.39    -0.39 
Epslevel = 1.000000e-10.  Vscale = 4.871346e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]       29  -1.3e-14 -1.3e-14 
Epslevel = 1.000000e-10.  Vscale = 5.773752e-01.
ans =
   chebfun column (1 smooth piece)
       interval       length   endpoint values trig
[       0,     6.3]       29      0.59     0.59 
Epslevel = 1.000000e-10.  Vscale = 5.917415e-01.

and satisfy the differential equation to high precision:

norm(L*V - V*D, inf)
ans =
     6.625664957591112e-09

References

  1. G. Teschl, Ordinary Differential Equations and Dynamical Systems, Graduate Studies in Mathematics, American Mathematical Society, Providence RI, 2012.

  2. E. Mathieu, Memoire sur le mouvement vibratoire d'une membrane de forme elliptique, Journal de mathematiques pures et appliquees, 13 (1868), pp. 137--203.