This is an elementary example to illustrate how one might use Chebfun to solve a very simple ODE initial-value problem. We take the scalar test problem
$$ u' - \lambda u = 0 ,~~~ u(0) = 1,~ \lambda = -10000 $$
on the interval $[0,.005]$. The solution is $\exp(\lambda x)$.
d = [0,.005]; % domain x = chebfun('x',d); % x variable L = chebop(d); % operator lambda = -10000; % specifying parameter lambda L.op = @(u) diff(u,1) - lambda*u; % linear operator defining the ODE L.lbc = @(u) u-1; % imposing Dirichlet boundary condition u = L\0; % solve the problem plot(u,'linewidth',1.6) % plot the solution err = norm(u-exp(lambda*x),inf); % measure the error FS = 'fontsize'; xlabel('x',FS,12) ylabel('exp(x)',FS,12) title(sprintf('Solution of IVP for exp(x) -- error = %7.2e',err),FS,14)