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Abstract. An object-oriented Matlab system is described that extends the capabilities of
Chebfun to smooth functions of two variables defined on rectangles. Functions are approximated
to essentially machine precision by using iterative Gaussian elimination with complete pivoting to
form “chebfun2” objects representing low rank approximations. Operations such as integration,
differentiation, function evaluation, and transforms are particularly efficient. Global optimization,
the singular value decomposition, and rootfinding are also extended to chebfun2 objects. Numerical
applications are presented.
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1. Introduction. In scientific computing it is common that models are con-
tinuous even though discretizations are used in their solution. Abstraction, in the
object-oriented programming sense of the term, is a powerful idea to bridge the gap
between these models and the numerical algorithms that solve them. Chebfun2 is a
software system written in Matlab that exploits abstraction to compute with bivari-
ate functions and is the first extension of Chebfun to two dimensions.

Chebfun was first released in 2004 [1] and has become a well-established software
system for computing in one dimension [37]. For smooth functions f : [−1, 1] → R, a
“chebfun” is a polynomial interpolant of f(x) through n+ 1 Chebyshev points, given
by

xj = cos

(

jπ

n

)

, 0 ≤ j ≤ n. (1.1)

The polynomial degree is adaptively chosen so that the chebfun approximates f , on
the whole interval, to machine precision. A chebfun object stores these n + 1 values
(f(xj))0≤j≤n as a vector, which are the coefficients in the Lagrange basis,

f(x) ≈
n
∑

j=0

f(xj)ℓj(x), ℓj(x) =

∏n
i=0,i 6=j(x− xi)

∏n
i=0,i 6=j(xj − xi)

.

Chebfun allows numerical computing with functions, and commands such as norm

and diff return the 2-norm and derivative, respectively [35]. For convenience, we
have summarized a selection of Chebfun commands in Table 1.1. A chebfun is, more
specifically, a column chebfun when size(f) returns inf× 1, where inf represents the
continuous variable. Alternatively, if size(f) is 1 × inf then it is a row chebfun. We
can also horizontally concatenate column chebfuns together, as in [f g h], to form
a column quasimatrix of size inf × 3, and row quasimatrices can be manipulated
similarly. As we shall describe, a column quasimatrix, a row quasimatrix and a
diagonal matrix can be combined to approximate functions of two variables and are
the main ingredients of a chebfun2.

Developing Chebfun2 has brought up many questions, and our answers have
guided this process:
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Chebfun command Operation Algorithm

chebpoly coefficients fast Fourier transform
feval evaluation barycentric formula [5]
sum integration Clenshaw–Curtis quadrature [11, 39]
diff differentiation recurrence relation [24, p. 34]
roots rootfinding eigenvalues of colleague matrix [7]
max maximization roots of the derivative
qr QR decomposition Householder triangularization [36]

Table 1.1: A selection of Chebfun commands, their corresponding operations and
underlying algorithms. In addition to the references cited, most of these algorithms
are discussed in [38].

1. What should we represent? We have chosen to represent (a) scalar valued functions
and (b) vector valued functions with two components, both on rectangles. The
reason for giving (a) and (b) primary status is that they both have innumerable
applications, but are mathematically quite distinct. For example, the notion of
rootfinding has one natural meaning for scalar functions and quite a different one
for vector functions.

2. What type of approximations should we use? We represent scalar valued functions
by low rank approximants, i.e., sums of functions of the form u(y)v(x), where
u(y) and v(x) are univariate functions (which are represented as chebfuns). Low
rank approximations allow us to build on 1D Chebyshev technology in a powerful
way. A vector valued function is represented by a low rank approximant for each
component.

3. How shall we construct them? We use an algorithm that is mathematically equiv-
alent to Gaussian elimination (GE) with complete pivoting to construct low rank
approximations. This is an unusual application of GE in two respects: (1) We use
it as an iterative, rather than a direct, algorithm; (2) In principle, we apply GE to
functions rather than matrices. We decide when a low rank approximant achieves
machine precision by employing an interesting mix of 1D and 2D resolution tests
(see section 2.1).

4. What are the important operations? We have taken Matlab and Chebfun as our
guide on this and have overloaded over 130 commands for chebfun2 and chebfun2v
objects, which represent scalar and vector functions, respectively. For instance, if
f is a chebfun2 on the domain [−1, 1], then we have

trace(f) =

∫ 1

−1

f(x, x)dx, flipud(f) = f(x,−y).

The meaning of some operations is obvious, like diff for computing derivatives
in the x or y variable. For others, like svd, a clear choice is suggested by the
mathematics, and Chebfun2 operations are designed whenever possible to be the
continuous analogues of their Matlab or Chebfun predecessors.

5. What reliable and efficient algorithms are there? Often our algorithms are mo-
tivated by algorithms for discrete objects, like matrices, and we hop back and
forth between a discrete and continuous mode. The recurring theme is the use
of low rank approximants, which consist of sums of products of univariate func-
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tions. Every algorithm attempts to exploit this low rank structure and build on
well-established 1D technology. A full description of the 1D technology is given in
[38].
Chebfun2 is publicly available under an open source license accompanied with

examples and all the Matlab code [32]. [Note to referees: this will be true by 4th of
March 2013.]

Throughout this article we restrict our attention to scalar and vector valued func-
tions defined on the default unit square, i.e. [−1, 1]2, though the software permits easy
treatment of general rectangular domains.

In the next section we describe how GE with complete pivoting can be used as
a practical algorithm for approximating a function of two variables. In section 3 we
describe the Chebfun2 algorithms for integration, differentiation, function evaluation
and transforms, which are based on 1D technology. Section 4 presents the vector
form of Chebfun2 for operations to implement “div, grad, curl and all that” for vector
valued functions. In section 5 we introduce an algorithm for global optimization
and, as an example, use it solve a problem from the SIAM 100-Digit Challenge [6,
34]. In section 6 we describe the singular value decomposition of a chebfun2 and
numerically demonstrate that GE with complete pivoting can compute near-optimal
low rank approximations. In section 7 we discuss the current rootfinding capabilities
of Chebfun2. Finally, in section 8 we describe two prospects for further work.

We have announced the release of Chebfun2 earlier in an article in SIAM News

[33].

2. Low rank function approximation. Given a continuous bivariate function
f : [−1, 1]2 → R, the optimal rank k approximation in the L2-norm is given by the
singular value decomposition (SVD). The SVD (or Karhunen–Loève expansion) is
defined by [29]

f(x, y) =

∞
∑

j=1

σjφj(y)ψj(x), (2.1)

where σ1, σ2, . . . , is a non-increasing real sequence of singular values, and the sets
{φ1(x), φ2(x), . . . , } and {ψ1(y), ψ2(y), . . . , } are orthonormal functions in L2([−1, 1]).
Each term in (2.1) is an “outer product” of two univariate functions, called a rank 1
function. The optimal rank k approximation to f in the L2-norm can be found by
truncating (2.1) after k terms,

f(x, y) ≈ fk(x, y) =

k
∑

j=1

σjφj(y)ψj(x), ‖f − fk‖L2([−1,1]2) =





∞
∑

j=k+1

σ2
j





1

2

.

Fortunately, the sequence σ1, σ2, . . . , decays rapidly for smooth functions. The con-
vergence rates for the singular values have a similar flavor to univariate approximation
theory: the smoother the function, the faster the singular values decay. Some results
to this effect can be found in [17, 23, 41], and we hope to discuss the convergence
question further in a separate publication.

Numerically, a rank k approximant to f can be computed by sampling it on a
n×n Chebyshev tensor grid, taking the matrix of sampled values, and computing its
matrix singular value decomposition. The first k singular values and left and right
singular vectors form the optimal rank k approximation to the sampled matrix in
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Algorithm: GE with complete pivoting for functions

Input: A function f = f(x, y) on [−1, 1]2 and a tolerance tol

Output: A low rank approximation fk(x, y) satisfying |f − fk| < tol

e0(x, y) = f(x, y), f0(x, y) = 0

for k = 0, 1, 2, . . . ,

|ek(xk, yk)| = max(|ek(x, y)|), (x, y) ∈ [−1, 1]2

if |ek(xk, yk)| < tol, stop

ek+1(x, y) = ek(x, y)− ek(xk, y)ek(x, yk)/ek(xk, yk)

fk+1(x, y) = fk(x, y) + ek(xk, y)ek(x, yk)/ek(xk, yk)

end

Fig. 2.1: Iterative GE with complete pivoting for approximation of functions of two
variables. The first k steps construct a rank k approximation to f . Our numerical
algorithm is based on a discretization of this continuous idealization.

the discrete 2-norm. Functions can be constructed from each left (right) singular
vector by polynomial interpolation, and provided n is sufficiently large, these will
be good approximations to the first k singular functions. This process constructs an
approximate singular value decomposition of a function and requires O(n3) operations
and n2 evaluations of f . Instead, we use GE with complete pivoting to compute a
near-optimal rank k approximation in O(k2n+ k3) operations.

Here is our algorithm of GE with complete pivoting applied to a bivariate function
f . First, we define e0 = f and find an approximation to the location of max |e0(x, y)|
over [−1, 1]2, say (x0, y0). Then we construct a rank 1 function

f1(x, y) =
e0(x0, y)e0(x, y0)

e0(x0, y0)
= d1c1(y)r1(x), d1 =

1

e0(x0, y0)
,

which interpolates f along the two lines y = y0 and x = x0. We calculate the residual
e1 = f − f1 and repeat the same procedure to form a rank 2 function

f2(x, y) = f1(x, y) +
e1(x1, y)e1(x, y1)

e1(x1, y1)
= f1(x, y) + d2c2(y)r2(x),

where (x1, y1) is an approximate location to the maximum of |e1(x, y)|. The function
f2 interpolates f along x = x0, x = x1, y = y0, and y = y1. We continue constructing
successive approximations f1, f2, . . . , fk, where fk interpolates f along 2k lines, until
an approximate maximum of |ek| = |f − fk| falls below relative machine precision.
Figure 2.1 gives the pseudocode for this algorithm. Note that each rank 1 function
is the product of two univariate functions, which are represented very efficiently by
Chebfun.

The number of steps for convergence of this algorithm is function dependent,
and in practice, we usually observe that the approximate maxima d1, . . . , dk decay at
the same rate as the singular values. Surprisingly often, only a few steps of GE are
required to approximate a function to machine precision.
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We call (x0, y0), . . . , (xk−1, yk−1) the pivot locations and d1, . . . , dk the pivot val-

ues. We also refer to the functions c1(y), . . . , ck(y) and r1(x), . . . , rk(x) as the column

slices and row slices, respectively. After constructing k successive approximations
f1, . . . , fk, we say we have performed k steps of GE.

2.1. Algorithmic details. So far we have described GE at the continuous level,
in terms of the manipulation of functions. However, to achieve machine precision with
the speed of numerical linear algebra we actually work with a discretized version of
the algorithm of Figure 2.1. The discretized algorithm splits into two stages, with
the first designed to find candidate pivot locations, i.e., good approximate locations
of the absolute maxima, and the second to ensure we have sufficiently sampled the
column and row slices.

Stage 1: Finding candidate pivot locations and rank k. First we sample
f on a 9× 9 Chebyshev tensor grid and perform at most 3 steps of GE. If we find the
sampled matrix can be approximated to machine precision by a rank 1, 2 or 3 matrix,
then we move on to stage 2; otherwise, we sample on a 17× 17 Chebyshev tensor grid
and perform at most 5 steps of GE. We proceed to stage 2 if a matrix of rank 5, or
less, is sufficient. We continue sampling on nested Chebyshev grids of size 9, 17, 33,
65, and so on until we discover the sampled matrix can be approximated to machine
precision by a matrix of rank 3, 5, 9, 17, and so on.

Thus, stage 1 approximates a
(

2j+2 + 1
)

×
(

2j+2 + 1
)

matrix by a matrix of rank
2j + 1, or less, for j ≥ 1. Generically, if f : [−1, 1]2 → R can be approximated
to essentially machine precision by a rank k function, then stage 1 samples f on a
(

2j+2 + 1
)

×
(

2j+2 + 1
)

tensor grid, where j = ⌈log2(k − 1)⌉, and k steps of GE are
required. Since

2⌈log2
(k−1)⌉+2 + 1 ≤ 8k + 1 = O(k),

stage 1 requires O
(

k3
)

operations. We store the pivot locations used in the k suc-
cessful steps of GE and go to stage 2.

Stage 2: Resolving column and row slices. Stage 1 has determined a can-
didate set of pivot locations required to approximate f , and stage 2 is designed
to ensure that the column and row slices are sufficiently sampled. For instance,
f(x, y) = x cos(100y) is a rank 1 function, so stage 1 completes after sampling on a
9×9 Chebyshev tensor grid even though 147 Chebyshev samples are needed to resolve
the oscillations in the y-direction. For efficiency we only sample f on a k-skeleton of
a tensor grid, i.e., a subset consisting of k columns and rows of the grid, and per-
form GE on that skeleton. For example, Figure 2.2 shows the 4-skeleton used when
approximating Franke’s function [13],

f(x, y) =
3

4
e−((9x−2)2+(9y−2)2)/4 +

3

4
e−((9x−1)2/49−(9y+1)/10)

+
1

2
e−((9x−7)2+(9y−3)2)/4 −

1

5
e−((9x−4)2+(9y−7)2).

(2.2)

After k steps of GE we have sampled the column and row slices at Chebyshev points.
Following the procedure used by Chebfun, we convert each column and row slice to
coefficients using the fast Fourier transform to ensure that their tails have decayed
to essentially machine precision. Figure 2.2 shows the Chebyshev coefficients for the
column slices used to approximate (2.2). For instance, if the column slices are not
resolved with 33 points, then we sample f at 65 points along each column and repeat
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Fig. 2.2: Left: The skeleton used in stage 2 of the construction algorithm for approx-
imating Franke’s function (2.2). Stage 2 only samples f on the skeleton, i.e., along
the black lines. Right: The Chebyshev coefficients of the four column slices. The
coefficients decay to machine precision, indicating that the column slices have been
sufficiently sampled.

k steps of GE. We continue increasing the sampling along columns and rows until we
have resolved them. Since the sets of 9, 17, 33, . . . , Chebyshev points are nested, we
can always pivot at the same locations as determined in stage 1. If the column slices
require degree m− 1 polynomial interpolants and the row slices require degree n− 1
polynomial interpolants, then this stage samples f at, at most,

k
(

2⌈log2
(n)⌉ + 2⌈log2

(m)⌉
)

≤ 2k(n+m)

points. We then perform k steps of GE on the selected rows and columns, requiring
O
(

k2(n+m)
)

operations.
At the end of the construction we have approximated a function f as

f(x, y) ≈ fk(x, y) =
k

∑

j=1

djcj(y)rj(x).

We store the column slices in a column quasimatrix C(y) = [c1(y), . . . , ck(y)], where
cj(y) is a column chebfun. Similarly, the row slices are stored as chebfuns in a row
quasimatrix R(x), and the pivot values d1, . . . , dk are stored as a vector. We can also
write the approximant as

fk(x, y) = C(y)DR(x), D = diag (d1, . . . , dk) . (2.3)

This representation highlights how GE decouples the x and y variables, which will be
very useful for tensor product operations (see section 3).

Figure 2.3 shows contour plots with pivot locations of six chebfun2 objects that
approximate bivariate functions to machine precision. For example, the following
Chebfun2 code produces the top-left plot:

f = chebfun2(@(x,y) 1./(1+100*(x.^2+y.^2).^2))

contour(f), hold on, plot(f,’.k’)
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a

rank 125

b

rank 65

c

rank 28

d

rank 5

e

rank 33

f

rank 2

Fig. 2.3: Contour plots for six functions f on [−1, 1]2, with the pivot locations marked
by dots: (a) 1/(1+100(x2+ y2)2); (b) 1/(1+100( 12 −x

2− y2)2); (c) 1/(1+1000((x−
1
2 )

2(y + 1
2 )

2(x + 1
2 )

2(y − 1
2 )

2)); (d) cos(10(x2 + y)) + sin(10(x + y2)); (e) Ai(5(x +

y2))Ai(−5(x2 + y2)); (f) tanh(10x) tanh(10y)/ tanh(10)2 + cos(5x).

Remark. We deliberately do not represent each column and row slice as an
independent chebfun with the minimal degree. Instead we ensure all the column
slices have the same degree. Similarly, all the row slices have the same degree (which
can be different than the degree of the column slices). This is important for efficiency
since subsequent operations can then be vectorized.

2.2. Object composition. One or more chebfun2 objects can be combined
together to make new ones; the object-oriented programming term for this is object

composition. Table 2.1 summarizes some composition operations that are possible
with chebfun2 objects. For example, if f is a chebfun2, then cos(f), exp(f) and
f.^2 return chebfun2 objects corresponding to the cosine, exponential and square of
f, respectively. To carry out these operations the Chebfun2 constructor is called, so
that the chebfun2 for exp(f), for example, is constructed by applying the iterative
GE algorithm in the usual manner to samples of exp(f) on a sequence of grids.

2.3. Related approaches. Ideas related to Gaussian elimination for functions
have been developed by various authors under various names, though the connec-
tion with GE is usually not mentioned. We now briefly summarize some of the
ideas of pseudoskeleton approximation [14], Adaptive Cross Approximation (ACA)
[3], Geddes–Newton series [8], and rank-revealing decompositions [20, 27].
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Chebfun2 command Operation

+, - addition, subtraction
.*, ./ multiplication, division

cos, sin, tan trigonometric functions
cosh, sinh, tanh hyperbolic functions

exp exponential
power integer powers

Table 2.1: A selection of object composition commands in Chebfun2. In each case
the result is computed by calling the Chebfun2 constructor to generate a low rank
approximation to machine precision.

Pseudoskeletons and Adaptive Cross Approximation. Pseudoskeletons
were developed by Goreinov, Tyrtyshnikov, and Zamarashkin [14] and approximate
a matrix A ∈ R

n×n by a matrix of low rank by computing the CUR decomposition1

A ≈ CUR, where C ∈ R
n×k and R ∈ R

k×n are subsets of the columns and rows of A,
respectively, and U ∈ R

k×k. Selecting good columns and rows of A is of paramount
importance, and this can be achieved via maximizing volumes [15], randomized tech-
niques [12], or ACA. ACA was mainly developed by Bebendorf and constructs a
skeleton approximation with columns and rows selected adaptively [2]. The selection
of a column and row corresponds to choosing a pivot location in GE, where the pivot-
ing entry is the element belonging to both the column and row. If the first k columns
and rows are selected, then

(

A11 A12

A21 A22

)

−

(

A11

A21

)

A−1
11

(

A11 A12

)

=

(

0 0
0 S

)

, A11 ∈ R
k×k, (2.4)

where S = A22−A21A
−1
11 A12 is the Schur complement of A22 in A. The relation (2.4)

is also found in [3, p. 128] and can be compared with Theorem 1.4 of [30] to show
that ACA and GE are equivalent. This connection remains even when any k columns
and rows are selected [30, Theorem 1.8]. The use of the continuous analogue of GE
with complete pivoting by Chebfun2 is equivalent to the continuous analogue of ACA
with column and row selection via complete pivoting.

In practice, ACA is used to compute low rank approximation of matrices that are
derived by sampling functions [3], and it has been used extensively by Hackbusch and
others for constructing hierarchical representations of matrices [18, 19].

Geddes–Newton series. Independently of ACA, Chapman in his PhD thesis
[10] in 2003 developed a theoretical framework for what he calls the Geddes–Newton

series. For a function f and a splitting point (a, b) ∈ [−1, 1] such that f(a, b) 6= 0, the
splitting operator Υ(a,b) is defined as

Υ(a,b)f(x, y) =
f(x, b)f(a, y)

f(a, b)
,

1The pseudoskeleton literature writes A ≈ CGR. More recently, it has become popular to follow
the nomenclature of [12] and replace G by U .
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and this is the rank 1 approximation to f obtained after one step of GE with pivot
location (a, b). The splitting operator is now applied to the function

f(x, y)−Υ(a,b)f(x, y)

with a different splitting point. Repeating this process k times is equivalent to apply-
ing k steps of GE on f .

Carvajal, Chapman and Geddes used GE for the quadrature of symmetric func-
tions [8], and it was their work that initially led us to develop the algorithm for Cheb-
fun2. Their integration algorithm first maps a function to [0, 1]2 and then decomposes
it into symmetric and anti-symmetric parts, ignoring the anti-symmetric part since it
integrates to zero. However, Carvajal et al. employed a specialized pivoting strategy
designed to preserve symmetry, whereas we use complete pivoting. Geddes–Newton
series stand out for being the only case of an iterative GE type of algorithm that
we know of in the literature introduced mainly to approximate functions rather than
matrices [10].

Rank-revealing decomposition. The SVD computes the optimal rank k ap-
proximation to a matrix in the 2-norm, though it is relatively expensive. The QR,
UTV T and LU decompositions can also be used for constructing low rank matrix ap-
proximations that can be near-optimal [21, 27, 31]. The LU decomposition computed
via GE with complete pivoting can be an excellent rank-revealing decomposition, and
hence, the rank of a chebfun2 approximant to a function is usually close to the minimal
rank required to achieve machine precision.

3. Quadrature and other tensor product operations. If f is a matrix, then
the Matlab command sum(f), or sum(f,1), returns a row vector representing the
sum of each column, and sum(f,2) returns a column vector after summing up the
rows. If f is a chebfun2, then we have

sum(f,1) =

∫ 1

−1

f(x, y)dy, sum(f,2) =

∫ 1

−1

f(x, y)dx,

represented as row and column chebfuns, respectively. Thus in the language of proba-
bility, the sum command computes marginal distributions. The algorithm underlying
these operations exemplifies how Chebfun2 takes advantage of its low rank representa-
tions, together with the established 1D Chebfun technology, to carry out substantial
computations much faster than one might expect.

For example, consider the computation of sum(f,2), whose result is a chebfun in
the y variable. If f is of rank k, the necessary formula is

∫ 1

−1

f(x, y)dx =

∫ 1

−1

k
∑

j=1

djcj(y)rj(x)dx =

k
∑

j=1

djcj(y)

(∫ 1

−1

rj(x)dx

)

. (3.1)

It follows that the evaluation of sum(f,2) reduces to the integration of k chebfuns,
in parentheses in (3.1), and the addition of the corresponding multiples of cj(y) in
Chebfun. The integration is done by calling Chebfun’s sum command, which utilizes
the Clenshaw–Curtis quadrature rule

∫ 1

−1

rj(x)dx =
n
∑

i=0

wirj(xi), 1 ≤ j ≤ k,

9



where xi are the Chebyshev nodes (1.1) and wi are the quadrature weights.
Following familiar Matlab syntax, the command sum(sum(f)) delivers the defi-

nite integral over [−1, 1]2 by integrating over the y-variable, constructing an interme-
diary row chebfun, and then integrating this. The command sum2(f) computes the
same quantity more efficiently because an intermediary chebfun is not constructed.
The necessary result corresponds to the integration of 2k chebfuns in which all the col-
umn (row) slices are of the same degree. Thus, the Clenshaw–Curtis quadrature can
be vectorized, and only two sets of quadrature weights are computed using Chebfun’s
algorithm based on [39].

Thus, integration is very efficient for a chebfun2, because it is carried out via one-
dimensional quadrature rules. A similar surprising efficiency extends to other tensor
product operators, which represent a significant part of Chebfun2 functionality.

Definition 3.1. A tensor product operator L is a linear operator on functions of

x and y with the property that if f(x, y) = c(y)r(x), then L = Ly(c)Lx(r), for some

operators Ly and Lx. Thus, if f has rank k, then

L





k
∑

j=1

djcj(y)rj(x)



 =
k

∑

j=1

dj (Lycj(y)) (Lxrj(x)) .

A tensor product operation can be computed with O(k) calls to well-established Cheb-
fun algorithms since Ly and Lx act on functions of one variable. Four important ex-
amples of tensor product operators are integration (described above), differentiation,
evaluation, and the fast Fourier transform.

Differentiation. If f is an n×nmatrix, then the Matlab command diff(f,N),
or diff(f,N,1), returns an (n − N) × n matrix of Nth order differences along the
columns, while diff(f,N,2) calculates the differences along the rows. For a chebfun2
the same syntax represents differentiation:

diff(f,N,1) =
∂Nf

∂yN
, diff(f,N,2) =

∂Nf

∂xN
.

Differentiation is the tensor product of univariate differentiation since

∂Nf

∂yN
=

k
∑

j=1

dj
∂Ncj(y)

∂yN
rj(x),

∂Nf

∂xN
=

k
∑

j=1

djcj(y)
∂Nrj(x)

∂yN
.

These functions are computed with k calls to the Chebfun diff command.
These differentiation and integration algorithms mean that vector calculus on

chebfun2 and chebfun2v objects is very efficient (see section 4).

Function evaluation. In Matlab, indexing into a matrix selects a subset of
its elements. In Chebfun2, the analogous operation is evaluation of f at various
points, with f(x,y) returning the value of f at (x, y). Evaluation is a tensor product
operation since

f(x, y) =
k

∑

j=1

djcj(y)rj(x),

which involves the evaluation of 2k univariate functions, and this computation is
carried out by using the barycentric formula [5, 28]. This formula has been vectorized
so that multiple column and row slices of the same degree are evaluated efficiently.
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Computation of Chebyshev coefficients. If f is a chebfun, chebpoly(f)

computes the Chebyshev expansion coefficients of a Chebfun, i.e., the coefficients in
the expansion

f(x) =

n
∑

j=0

αjTj(x),

in O (n log n) operations using the fast Fourier transform. This is a very important
operation and the main reason why Chebfun uses a Chebyshev basis instead of, for
example, a basis of Legendre polynomials.

Analogously, the Chebfun2 command X=chebpoly2(f) computes the expansion
coefficients of a chebfun2, i.e., the coefficients in the expansion

f(x, y) =
m−1
∑

i=0

n−1
∑

j=0

αijTi(y)Tj(x),

and the m×n matrix returned represents these coefficients. If f is of rank k, then the
coefficient matrix is also of rank k, and the command [A D B]=chebpoly2(f) requires
only O (k (n log n+m logm)) operations since it returns the coefficient matrix in its
low rank form, i.e., X = ADBT , where A,B ∈ R

n×k and D ∈ R
k×k is diagonal. This

operation is computed with 2k calls to the Chebfun command chebpoly since2

chebpoly2(f) =

k
∑

j=1

djchebpoly(cj)
T chebpoly(rj),

where each cj is evaluated at m Chebyshev points and each rj at n Chebyshev points
using the fast Fourier transform. For evaluation at points that are a subset of a
Chebyshev grid, this approach can be significantly faster than use of the barycentric
formula.

Tensor product operators represent the ideal situation where well-established
Chebfun technology can be exploited for computing in two dimensions. Table 3.1
shows a selection of Chebfun2 commands that are tensor product operations. If a
prescribed function happens to be univariate, then k = 1, and these Chebfun2 com-
mands are essentially the same as their univariate counterparts.

4. Chebfun2v objects and vector calculus. As mentioned in the Introduc-
tion, Chebfun2 is also designed to work with vector valued functions defined on rect-
angles, as well as scalar valued ones. Our convention is to use a lower case letter for
a scalar function, f , and an upper case letter for a vector function, F = (f1, f2)

T .
From the point of view of approximation, the vector aspect of Chebfun2 intro-

duces no new complications. A vector function F is represented as two independent
scalar functions, and such a representation is constructed by computing a low rank
approximation to each component.

The more interesting side of vector Chebfun2 is the set of operations that can be
implemented — algorithmically similar to scalar functions, but potentially very useful
for applications.

2The Chebfun command chebpoly always returns a row vector of coefficients as of ver-
sion 4.2.2194, though this may change in a future release.
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Chebfun2 command Operation

sum, sum2 integration
cumsum cumulative integration
prod product integration

cumprod cumulative product integration
norm L2-norm
diff differentiation

chebpoly2 fast Fourier transform
f(x,y) evaluation

plot, surf, contour plotting
diag univariate function along a diagonal
trace integration along y = x

flipud, fliplr reverse direction of coordinates
mean2, std2 mean, standard deviation

Table 3.1: A selection of scalar Chebfun2 commands corresponding to tensor product
operations. In each case the result is computed with much greater speed than one
might expect because the algorithms can take advantage of the rank k structure.

Algebraic operations. The basic non-differential operations of vector calculus
are scalar multiplication fG, vector addition F + G, dot product F · G, and cross
product F × G. Unfortunately, there are two notational inconveniences in Matlab:
(1) The inability to use the ‘.’ symbol for the dot product, and (2) The lack of a ‘x’
symbol for the cross product. The ‘.’ symbol is already used as a special character
for referencing, and ‘x’ is usually used as a variable name, preventing it from being
an operator. Accordingly, in Chebfun2 we have chosen f.*G, F+G, dot(F,G), and
cross(F,G) for the four operations. We explain these operations in turn.

Scalar multiplication is the product of a scalar function with a vector function,
denoted by f.*G, and algorithmically, it is achieved by two scalar function multipli-
cations, one for each component.

Vector addition, denoted by F+G, yields another chebfun2v and is computed by
adding the two scalar components together. It satisfies the parallelogram law 2‖F‖22+
2‖G‖22 = ‖F +G‖22+ ‖F −G‖22, which can be verified numerically, as in this example:

F = chebfun2v(@(x,y)cos(x.*y),@(x,y)sin(x.*y));

G = chebfun2v(@(x,y)x+y,@(x,y)1+x+y);

abs((2*norm(F)^2 + 2*norm(G)^2) - (norm(F+G)^2 + norm(F-G)^2))

ans = 3.5527e-15

The dot product, denoted by dot(F,G), takes two vector functions and returns
a scalar function. Algebraically, it is the inner product, i.e., the sum of the products
of the two components. If the dot product of two chebfun2v objects takes the value
zero at (x0, y0), then the vectors F (x0, y0) and G(x0, y0) are orthogonal.

The cross product, denoted by cross(F,G), is well known as an operation on
vector valued functions with three components, and it can also be defined for 2D
vector fields by

cross(F,G) = f1g2 − f2g1, F =

(

f1
f2

)

, G =

(

g1
g2

)

.

12



Note that the cross product of two vector valued functions with two components is a
scalar function, which can be represented by a chebfun2.

Differential operations. Vector calculus also involves various differential oper-
ators defined on scalar or vector valued functions such as gradient ∇f , curl ∇ × F ,
divergence ∇ · F , and Laplacian ∇2f .

The gradient of a chebfun2 is represented by a chebfun2v such that

grad(f) =

(

∂f/∂x
∂f/∂y

)

,

which points in the direction of steepest ascent of f. The gradient theorem says that
the integral of grad(f) over a curve only depends on the values of f at the endpoints
of that curve. We can check this numerically by using the Chebfun2v command
integral. This command computes the line integral of a vector valued function

integral(F,C) =

∫

C

F (r) · dr,

where C is a smooth curve represented by a complex valued chebfun (see Note below)
and · is the dot product. For example,

f = chebfun2(@(x,y)sin(2*x)+x.*y.^2); % chebfun2 object

F = grad(f); % gradient (chebfun2v)

C = chebfun(@(t) t.*exp(100i*t),[0 pi/10]); % spiral curve

v = integral(F,C); ends = f(pi/10,0)-f(0,0); % line integral

abs(v-ends) % gradient theorem

ans = 5.5511e-16

The curl of 2D vector function is a scalar function defined by

curl(F) =
∂f2
∂x

−
∂f1
∂y

, F =

(

f1
f2

)

.

If the chebfun2v F describes a vector velocity field of fluid flow, for example, then
curl(F) is a scalar function equal to twice the angular speed of a particle in the flow
at each point. A particle moving in a gradient field has zero angular speed and hence,
curl(grad(f)) = 0, a well known identity that can also be checked numerically.

The divergence of a chebfun2v is defined as

div(F) =
∂f1
∂x

+
∂f2
∂y

, F =

(

f1
f2

)

.

This measures a vector field’s distribution of sources or sinks. The Laplacian is closely
related and is the divergence of the gradient lap(f) = div(grad(f)).

Table 4.1 summarizes the vector calculus commands available in Chebfun2.

Phase portraits. A phase portrait is a graphical representation of a system of
trajectories for a two-variable autonomous dynamical system. In Chebfun2 we can
plot phase portraits by using the quiver command, which has been overloaded to
plot the vector field (see Figure 4.1).

In addition, Chebfun2 makes it easy to compute and plot individual trajectories
of a vector field. If F is a chebfun2v, then ode45(F,tspan,y0) solves the autonomous
system dx/dt = f1(x, y), dy/dt = f2(x, y), where f1 and f2 are the first and second
components of F , respectively, with the prescribed time interval and initial conditions.
This command returns a complex valued chebfun representing the trajectory in the
form x(t) + iy(t).

13



Command Operation

+, - addition, subtraction
dot dot product

cross cross product
grad gradient
curl curl
div divergence
lap Laplacian

quiver phase portrait

Table 4.1: Vector calculus commands in Chebfun2. In each case the result is computed
with greater speed than one might expect because of the exploitation of the tensor
product structure (see section 3).

Note. As is well known, a pair of real scalar functions f and g can be encoded
as a complex function f + ig. In the design of Chebfun2 we have debated how much
use to make of this trick, which can simplify many operations, but at the same time
may be confusing. For example, every (real) chebfun2v might have been realized
as a complex chebfun2. We decided not to go that far, and the complex output
of ode45 and roots (see section 7), as well as the second input argument to the
command integral (above) are exceptions. The complex output of ode45 allows the
trajectory’s length to be computed with the Chebfun command arclength.

The following code produces the phase portrait for a dynamical system corre-
sponding to a nonlinear pendulum, ẋ = y, ẏ = − sin(x)/4, together with some sample
trajectories:

phasedom=[-4 4 -2 2]; % phase plane domain

F = chebfun2v(@(x,y)y,@(x,y)-sin(x)/4,phasedom);

for ic = .5:.5:3 % initial conditions

[t y]=ode45(F,[0 40],[ic,0]); % solve autonomous system

plot(y,’r’), hold on, % plot trajectory

end

quiver(F) % vector field

arclength(y) % length of a trajectory

ans = 14.0386

Figure 4.1 shows the resulting image, as well as a corresponding picture for the Duffing
oscillator

ẋ = y, ẏ = 4
100y −

3
4x+ x3,

where the time interval is [0, 50] and the initial condition is x(0) = 0, y(0) = 1
2 .

5. Global Optimization. If f is a matrix, then the Matlab command max(f),
or max(f,[],1), returns a row vector of maximum values along each column of f.
Similarly, max(f,[],2) returns a column vector of maximum values along each row.
If f is a chebfun2, then the same syntax yields analogous results,

max(f,[],1) = max
y∈[−1,1]

f(x, y), max(f,[],2) = max
x∈[−1,1]

f(x, y)
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Fig. 4.1: Phase plane diagrams and example trajectories for the nonlinear pendulum
(left) and the Duffing oscillator (right). Red lines are trajectories in the phase plane
computed using the Chebfun2 command ode45.

represented as row and column chebfuns, respectively. Often these chebfuns are only
piecewise smooth, and Chebfun’s edge detection algorithm is used to decide the lo-
cations of the breakpoints [26]. If f and g are chebfun2 objects, then we do not
currently allow max(f,g), because this 2D function will generally have discontinu-
ities in its first derivative lying along curves, and Chebfun2 cannot represent such
nonsmooth functions.

The global 2D maximum of a chebfun2 can be computed by max(max(f)), but the
same result can be obtained more efficiently by avoiding an intermediary non-smooth
chebfun with max2(f). If a chebfun2 is of rank 1, i.e., f(x, y) = d1c1(y)r1(x), then
the global maximum is computed by noting that

max2(f) = d1 max {maxc1 · maxr1, minc1 · maxr1, maxc1 · minr1, minc1 · minr1} ,

where each max and min involves only univariate functions and existing Chebfun al-
gorithms are used [38, Chap. 18]. For k ≥ 2, however, Chebfun2 uses other algorithms
for global optimization, and Table 5.1 summarizes how the command and rank of a
chebfun2 determine the algorithm employed. All the algorithms, for k ≥ 2, are based
on obtaining initial guesses by one method and then switching to a superlinearly
convergent constrained trust-region method3, based on [9], in which the iterates are
constrained to the domain of the chebfun2.

5.1. Convex hull algorithm. For low rank chebfun2 objects, currently those
with rank 2 ≤ k ≤ 3, if the global maximum or minimum is desired, then we employ
the following algorithm based on the convex hull. Mathematically, this algorithm is
not restricted to k = 2, 3, but it is inefficient if k > 3. For any fixed point (x, y) ∈

3[Note to referees: The current implementation employs the Matlab command fmincon, which
is only available in the Optimization Toolbox. This will be replaced by our own publicly available
implementation in early 2013.]
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k = 1 2 ≤ k ≤ 3 k ≥ 4

min2, max2
or

minandmax2
Chebfun convex hull

algorithm
grid

evaluation

norm(·,inf) Chebfun convex hull
algorithm

power
iteration

Table 5.1: Optimization algorithms in Chebfun2. Various algorithms are used in
different situations and the choice depends on the rank k of the chebfun2 and on the
particular Chebfun2 command. For k ≥ 2, the algorithms listed are used to provide
initial guesses for a trust region iteration.

[−1, 1]2 we have

f(x, y) =

k
∑

j=1

djcj(y)rj(x) =
(

√

|d1|c1(y), . . . ,
√

|dk|ck(y)
)







±
√

|d1|r1(x)
...

±
√

|dk|rk(x)







= s(y)T t(x),

where s, t : [−1, 1] → R
k are continuous functions and the signs are chosen appropri-

ately depending on dj , 1 ≤ j ≤ k. We can define the following parameterizable curves
in R

k,

S =
{

s(y) ∈ R
k : y ∈ [−1, 1]

}

, T =
{

t(x) ∈ R
k : x ∈ [−1, 1]

}

,

and approximate them by discrete sets S̃ ∈ R
m×k, T̃ ∈ R

n×k by evaluating s(y)
and t(x) at m and n Chebyshev points, respectively. As always, m and n are the
numbers of Chebyshev coefficients required to represent the column and row slices
(see section 2.1). We then make the following approximation to the global maximum:

max {f(x, y) : x, y ∈ [−1, 1]} = max
{

s(y)T t(x) : x, y ∈ [−1, 1]
}

= max
{

aT b : a ∈ S, b ∈ T
}

≈ max
{

aT b : a ∈ S̃, b ∈ T̃
}

= max
{

aT b : a ∈ conv(S̃), b ∈ conv(T̃ )
}

,

where conv(X) is the convex hull of X. The convex hulls of S̃ and T̃ are computed
using the Matlab command convhull. We discard any point (x, y) if either t(x) 6∈
conv(T̃ ) or s(y) 6∈ conv(S̃).

Figure 5.1 shows an example of the convex hull algorithm. Here we take the
rank 2 function f(x, y) = 2y cos(5x2) + x sin(2y2) and show the convex hull of S̃ and
T̃ and the corresponding excluded gray region in [−1, 1]2.
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Fig. 5.1: Left: Convex hull, or convex envelope, in R
2 (red and blue) of the column

and row slices (black) for the rank 2 function f(x, y) = 2y cos(5x2)+x sin(2y2). Right:
Gray regions are excluded from [−1, 1]2 because these points do not lie on the convex
hull of the column and row slices. The global minimum and maximum lie in the pink
region. The red (blue) dot is the location of the global maximum (minimum).

The convex hull algorithm allows us to obtain candidate regions in [−1, 1]2 con-
taining the global extrema, and in these regions we sample the chebfun2 on the Cheby-
shev tensor grid and take the discrete maximum and minimum as initial guesses in a
trust-region iteration.

5.2. Grid evaluation. For the commands max2, min2, and minandmax2, if k >
3, then we evaluate the chebfun2 on a m × n Chebyshev grid using the fast Fourier
transform, where m and n are the numbers of Chebyshev coefficients required to
represent the column and row slices. From this grid we take the discrete maximum
and minimum as initial guesses for the trust-region iteration.

5.3. Power iteration. If the global absolute maximum of |f(x, y)| is required
with k > 3, such as for norm(f,inf), then we use a fast power iteration as proposed in
[4]. The advantage of this method is that it can be much faster when k ≪ min(m,n).

For the power iteration we first sample the column and row slices of a chebfun2
at m and n Chebyshev points, respectively, and obtain a matrix A ∈ R

m×n of rank
k, though we do not form this matrix explicitly. Given a rank k matrix A ∈ R

m×n,

A =
k

∑

j=0

djcjr
T
j , cj ∈ R

m×1, rj ∈ R
n×1, dj ∈ R,

the diagonal matrix B ∈ R
mn×mn defined by

B =
k

∑

j=1

djdiag(cj)⊗ diag(rj)

has eigenvalues Aij with eigenvectors ei ⊗ ej , where ei is the ith canonical vector.
Hence, the maximum entry of |A| can be computed by performing the power iteration
on B. The low rank structure of A is exploited so that themn diagonal entries of B are
not formed explicitly. Moreover, the initial vector x ∈ R

mn×1 is stored in Kronecker
product form and kept in this form throughout the iteration by compression [4]. This
power iteration requires O(k2(m+ n)) operations per iteration.
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Fig. 5.2: Problem 4 from: “Hundred-dollar, hundred-digit challenge” [34].

Example: Global minimum of a complicated function. In February 2002,
an article in SIAM News by the second author set a challenge to solve ten problems
each to ten digits of precision (the solution of each problem was a real number) [34].
Figure 5.2 shows one of the problems, which involves finding the global minimum of
a function. Since the term (x2 + y2)/4 grows away from (0, 0) while the other terms
remain bounded, it can be shown that the global minimum occurs in [−1, 1]2 [6].

The function is complicated and oscillatory, but of rank 4, as can be seen by
rearranging its terms and using the identity sin(a+ b) = sin(a) cos(b) + cos(a) sin(b),

f(x, y) =

(

x2

4
+ esin(50x) + sin(70 sin(x))

)

+

(

y2

4
+ sin(60ey) + sin(sin(80y))

)

− cos(10x) sin(10y)− sin(10x) cos(10y).

The Chebfun2 algorithm as implemented in the command min2 finds the global min-
imum in 0.18 seconds4 and achieves 12 correct digits.

f = @(x,y) exp(sin(50*x)) + sin(60*exp(y)) + sin(70*sin(x)) +...

sin(sin(80*y)) - sin(10*(x+y)) + (x.^2+y.^2)./4;

g = chebfun2(f); Y = min2(g); % Global minimum

abs(Y - (-3.306868647475237)) % Compare with exact answer

ans = 4.4098e-13

A surprising number of interesting functions of two variables are of low rank, and many
that are not mathematically of low rank still have excellent low rank approximations.

6. Singular value decomposition. If A is a n× n matrix, the Matlab com-
mand [U,S,V]=svd(A,0) returns the “economy-sized” SVD, where U, V ∈ R

n×k and
S ∈ R

k×k is a diagonal matrix. If f is a chebfun2, then [U,S,V]=svd(f), or svd(f,0),
returns the SVD of f, where U, V are column quasimatrices with k orthonormal
columns (in the L2 sense) and S is a k × k diagonal matrix. Of course this is not
the exact SVD, which in general would have infinite rank, but a finite rank approxi-
mation accurate to machine precision.

If each column of U and V is a chebfun of degree at most n, then computing
the SVD of a rank k chebfun2 requires O

(

k2n
)

operations. Figure 6.1 shows the
pseudocode used for the computation. The first step requires the Householder trian-
gularization of column quasimatrices and uses the Chebfun command qr described in
[36]. An excellent way to construct the SVD of a smooth bivariate function is usually
by first constructing a chebfun2 and then orthogonalizing the column and row slices.

4Timing was done on a 2012 1.6GHz Intel Core i5 MacBook Air with Matlab 2012a.
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Pseudocode: SVD of a chebfun2

Input: A chebfun2 f(x, y) = C(y)DR(x) (see 2.3)

Output: Quasimatrices with orthonormal columns Uf and Vf , and
a diagonal matrix Sf

1. Householder triangularization: C(y) = QC(y)RC , R(x)T = QR(x)RR

2. Compute: A = RCDR
T
R

3. Matrix SVD: A = UASAV
T
A

4. Compute: Uf = QC(y)UA, Vf = QR(x)VA and Sf = SA

Fig. 6.1: Pseudocode for computing the SVD of a chebfun2. This algorithm uses
Householder triangularization of a quasimatrix [36].

Example: Gaussian bumps. As an example, we compute the singular values
of a function composed by adding together 300 Gaussian bumps at arbitrary locations,

f(x, y) =

300
∑

j=0

e−γ((x−sj)
2+(y−tj)

2), (sj , tj) ∈ [−1, 1]2, (6.1)

where γ = 10, 100, 1000. A Gaussian bump is a rank 1 function, and hence, mathemat-
ically, f is of rank 300 (almost surely). However, it can be approximated to machine
precision by a function of much lower rank. Figure 6.2 displays a contour plot for the
case γ = 1000 and shows that the singular values of f decay supergeometrically. The
figure is computed with the following code:

s = RandStream(’mt19937ar’,’Seed’,1); % for reproducibility

gamma = 1000; f = chebfun2();

for n = 1:300

x0 = 2*rand(s)-1; y0 = 2*rand(s)-1;

df = chebfun2(@(x,y)exp(-((x-x0).^2+(y-y0).^2)/gamma));

f = f + df;

end

subplot(1,2,1), contour(f)

subplot(1,2,2), semilogy(svd(f))

Example: Near-optimality. The singular value decomposition allows us to
explore the near-optimality of GE with complete pivoting for constructing low rank
approximations. In Figure 6.3 we take the 2D Runge function given by

f(x, y) =
1

1 + γ (x2 + y2)
2 , γ = 1, 10, 100,

which is analytic, and Wendland’s compactly supported radial basis functions [40],

φ3,k(|x− y|) = φ3,k(r) =











(1− r)8+
(

32r3 + 25r2 + 8r + 1
)

k = 3

(1− r)4+ (4r + 1) k = 1

(1− r)2+ k = 0,
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Fig. 6.2: Left: Three hundred arbitrarily centered Gaussian bump functions added
together, as in (6.1), with γ = 1000. Right: Supergeometric decay of the normalized
singular values (the first singular value is scaled to be 1) for γ = 10, 100, 1000. Math-
ematically, (6.1) is almost surely of rank 300, but it can be approximated to machine
precision in these realizations by functions of rank 21, 59 and 176, respectively. The
supergeometric decay of the singular values can be explained by theory related to the
fast Gauss transform [16].
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Fig. 6.3: A comparison of SVD and GE approximations shows the near-optimality of
the latter approximations to smooth bivariate functions. Left: 2D Runge functions.
Right: Wendland’s compactly supported radial basis functions.

which have 2k continuous derivatives and thus belong to C2k. Figure 6.3 shows the L2

errors of the optimal rank approximations computed via the expensive singular value
decomposition, and the near-optimal rank approximations constructed via the Cheb-
fun2 constructor (GE with complete pivoting). We observe that GE with complete
pivoting usually computes near-optimal low rank approximations.

7. Rootfinding. There can be infinitely many complex roots of a scalar valued
function of two variables and, generically, they form continuous curves that do not end
abruptly5 [25]. A goal appropriate for many applications is to find representations of

5A formal discussion is beyond the scope of this paper.
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Fig. 7.1: The critical points of f(x, y) =
(

x2 − y3 + 1/8
)

sin(10xy) (black dots) lie at
the intersections of the zero contours of fx (blue curves), and fy (red curves). If f

is a chebfun2, then roots(f) returns complex valued chebfuns interpolating the zero
contours of f, and roots(gradient(f)) returns the critical points of f .

these zero curves. Currently, in Chebfun2 we use the Matlab command contourc

to find points lying on the zero contours of f, and then use a complex valued chebfun
to interpolate these points. Accordingly, if f is a chebfun2,roots(f) returns a quasi-
matrix, where each column is a complex valued chebfun interpolating a zero contour
of f in [−1, 1]2.

Determining the roots of a vector valued bivariate function with two components
is an entirely different problem since, generically, the roots are now finite in number
and isolated [22]. If F is a chebfun2v, then roots(F) aims to return the isolated roots
of the system

F (x, y) =

(

f1(x, y)
f2(x, y)

)

= 0, (x, y) ∈ [−1, 1]2. (7.1)

To achieve this, roots(F) approximates the zero contours of f1 and f2 using contourc

and then finds their intersections, which are used as initial guesses in a Newton iter-
ation. For example, Figure 7.1 plots the critical points and the zero contours of fx
and fy for f(x, y) =

(

x2 − y3 + 1/8
)

sin(10xy) by using the following code:

f = chebfun2(@(x,y) (x.^2-y.^3+1/8).*sin(10*x.*y));

r = roots(gradient(f)); % critical points

plot(roots(diff(f,1,2)),’b’), hold on % plot zero contours of f_x

plot(roots(diff(f)),’r’) % plot zero contours of f_y

plot(r(:,1),r(:,2),’k.’,’MarkerSize’,30) % plot extrema

Rootfinding by computing zero contours and their intersection works remarkably
well in many examples. However, this algorithm is not completely robust and certainly
does not offer the same reliably as univariate rootfinding based on the eigenvalues of
the colleague matrix [38, Chap. 18]. Occasionally, rootfinding via the intersections of
zero contours fails to find all the solutions to (7.1), and we are investigating alternative
algorithms to take better advantage of the low rank structure of a chebfun2.
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8. Future work. We are entering into an exciting stage of development where
computing with scalar and vector valued multivariate functions to machine precision
is practical. Chebfun2 has shown that computations can be performed in Matlab

in 2D by building on Chebfun technology. Challenges ahead include the extension of
Chebfun2 to functions with singularities, more general domains, and higher dimen-
sions. Mathematically, a key issue is to analyze the approximation and convergence
properties of the low rank approximations that form the basis of Chebfun2.
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