
BIT Numer Math (2009) 49: 721–741
DOI 10.1007/s10543-009-0240-1

Barycentric-Remez algorithms for best polynomial
approximation in the chebfun system

Ricardo Pachón · Lloyd N. Trefethen

Received: 8 December 2008 / Accepted: 9 September 2009 / Published online: 10 October 2009
© Springer Science + Business Media B.V. 2009

Abstract The Remez algorithm, 75 years old, is a famous method for computing
minimax polynomial approximations. Most implementations of this algorithm date
to an era when tractable degrees were in the dozens, whereas today, degrees of hun-
dreds or thousands are not a problem. We present a 21st-century update of the Remez
ideas in the context of the chebfun software system, which carries out numerical com-
puting with functions rather than numbers. A crucial feature of the new method is its
use of chebfun global rootfinding to locate extrema at each iterative step, based on a
recursive algorithm combining ideas of Specht, Good, Boyd, and Battles. Another im-
portant feature is the use of the barycentric interpolation formula to represent the trial
polynomials, which points the way to generalizations for rational approximations. We
comment on available software for minimax approximation and its scientific context,
arguing that its greatest importance these days is probably for fundamental studies
rather than applications.

Keywords Remez algorithm · Best polynomial approximation · Barycentric
interpolation · Chebfun system

Mathematics Subject Classification (2000) 41A50 · 41A10 · 65D05

1 Introduction

This article is devoted to a classic problem of best approximation: Given a contin-
uous function f on the interval I = [a, b], find a function p∗ in the space Pn of

Communicated by Hans Petter Langtangen.

R. Pachón (�) · L.N. Trefethen
Computing Laboratory, University of Oxford, Parks Rd., Oxford OX1 3QD, UK
e-mail: ricp@comlab.ox.ac.uk

L.N. Trefethen
e-mail: LNT@comlab.ox.ac.uk

mailto:ricp@comlab.ox.ac.uk
mailto:LNT@comlab.ox.ac.uk

722 R. Pachón, L.N. Trefethen

polynomials of degree ≤ n such that

‖f − p∗‖ ≤ ‖f − p‖ for all p ∈ Pn, (1.1)

where ‖ · ‖ is the supremum norm on I . The approximation p∗ exists and is unique,
and is known as the best, uniform, Chebyshev or minimax approximation to f . Dis-
cussions of this problem can be found in every book on approximation theory [11,
15, 26, 30, 31, 37, 42].

Starting with Chebyshev himself, the best approximation problem was studied
from the second half of the 19th century to the early 20th century, and by 1915 the
main results had been established [47]. A second wave of interest came in the 1950s
and 1960s when computational aspects were investigated. The focus of much of this
work was the algorithm introduced by Evgeny Yakovlevich Remez in a series of three
papers published in 1934 [39–41], and in this period were developed a deep under-
standing of its theoretical properties as well as numerous variations for its practical
implementation. In the 1970s the Remez algorithm also became a fundamental tool
of digital signal processing, where it was introduced by Parks and McClellan in the
context of filter design [36].

The 1970s are a long way back, but today’s algorithmic techniques and available
software for Remez calculations date mainly to that era. Concerning software, some
items of note are

– ACM Algorithm 318, by Boothroyd in 1967 [7]
– ACM Algorithm 414, by Golub and Smith in 1971 [19]
– ACM Algorithm 604, by Sauer in 1983 [43]
– The Remes-difcor algorithm, by Kaufman, Leeming and Taylor [24]
– RATCH/DRATCH from the IMSL library [34]
– E02ACF from the NAG library [33]
– REMES and FIRPM from Matlab’s Signal Processing Toolbox [27]

Most of these go back many years and in fact, most of them do not solve the general
best approximation problem as posed above but variants involving discrete variables
or digital filtering. One can find a few other computer programs in circulation, but
overall, it seems that there is no widely-used program at present for computing best
approximations. Thus this is a topic that is very widely known among numerical
mathematicians and engineers, but without much of a computational footprint.

If one considers applications, apart from signal processing, it is clear that in the
early decades of computers minimax approximations played a role in approximation
of special functions. For example, both polynomial and rational minimax approxi-
mations were used in the design of FUNPACK in the 1970s [12], the predecessor of
SPECFUN [13]. This kind of application, however, appears to have faded with the
years as computers have become more powerful and desiderata of scope and porta-
bility have grown more important than getting the last percentage point of efficiency
from an approximation.

We believe that even if best approximations are not at the heart of computational
science nowadays, they are such a fundamental idea, so basic a tool of approxima-
tion theory, that is desirable to be able to compute them easily. In the present article

Barycentric-Remez algorithms for best polynomial approximation 723

we present an algorithm that achieves this, making it possible to compute a best ap-
proximation with a single command. For example, here we find the degree 100 best
approximation to e|x| in less than a second on a workstation:

>> f = chebfun(’exp(abs(x))’);
>> tic, p = remez(f,100); toc
Elapsed time is 0.715704 seconds.

>> norm(f-p,inf)
ans = 0.002801440898864

The further command plot(f-p) shows a beautiful curve with 103 points of
equioscillation.

Our algorithm has five crucial features:

– Formulation within the chebfun system
– Barycentric Lagrange representation of polynomials
– Analytic formula for the leveled error
– Scaling barycentric weights by capacity
– Location of extrema by recursive Chebyshev rootfinding

The use of chebfun is new and brings many new angles to the problem, as we
shall describe. (The reader can find expositions of the chebfun system in [4], [35]
and www.comlab.ox.ac.uk/chebfun.) A barycentric representation was in-
troduced previously by Parks and McLellan [36] for trigonometric approximations
but may be new for algebraic polynomials, where the new feature of scaling by the
logarithmic capacity of the approximation interval becomes crucial for robustness.
Finally the method of localization of extrema at each iterative step is the most novel
algorithmic feature of our method. In the past, parabolic and other approximations
have been used which are fast but may miss extrema. The new approach relies in-
stead on global representations of each error curve and global zerofinding, one of the
hallmarks of the chebfun system. This makes possible an exceptionally high degree
of reliability.

Section 2 presents the classical Remez algorithm, emphasizing its two main steps:
the computation of a trial reference (Sect. 2.1) and a trial polynomial (Sect. 2.2).
Section 3 introduces the new barycentric-Remez algorithm together with its chebfun
implementation. The codes presented in this section make it easy to explore proper-
ties of best approximations. In Sect. 4 we show some of these possibilities. We com-
pare the convergence of best approximants computed with chebfuns to Jackson-type
bounds for continuous and Lipschitz continuous functions. Our short and efficient
implementation allows us to replicate with little effort some of the computations as-
sociated with the disproof given by Varga and Carpenter in 1985 [52] of a conjecture
formulated by Bernstein in 1914 for polynomial approximation of |x|. We conclude
in Sect. 5 with comments on the problem of extending the barycentric-Remez algo-
rithm to rational approximation.

724 R. Pachón, L.N. Trefethen

2 Classical Remez algorithm

Since the best approximation is unique, we can define the operator that assigns to each
continuous function its best polynomial approximation p∗ of fixed degree. It is well
known that this operator, although continuous, is nonlinear (for an example see [26,
p. 33]), and so we need iterative methods to compute p∗. The Remez algorithm is one
such method. Other important algorithms are the differential correction algorithms,
which rely on ideas of linear programming and are used to solve the discrete version
of this problem [2, 24, 38, 45]. We will not mention these methods further in this
paper.

We begin our discussion of the Remez algorithm by recalling two theorems that
are essential to it. The first was first proved by Borel in 1905 [8], [11, p. 75], [37,
p. 77].

Theorem 2.1 (Equioscillation property) A polynomial p ∈ Pn is the best approxi-
mation to f (that is, p = p∗) if and only if there exists a set of n + 2 distinct points
{xi}n+1

i=0 in I such that

f (xi) − p(xi) = λσi‖f − p∗‖, i = 0, . . . , n + 1, (2.1)

where σi := (−1)i and λ = 1 or λ = −1 is fixed.

Fig. 1 Best polynomial approximations (thin lines) of degrees 2, 5, 7 and 10 to f (x) = sin(3πx) exp(x)

(bold lines) on [−1,1]. The dots show the polynomial at the reference and the dashed vertical bars the
corresponding errors, of equal lengths and alternating in orientation

Barycentric-Remez algorithms for best polynomial approximation 725

A set of points A∗ := {xi}n+1
i=0 that satisfies (2.1) is called a reference. Figure 1

shows p∗ for f (x) = sin(3πx) exp(x), I = [−1,1] and n = 2,5,7 and 10, and
the references of 4, 7, 9 and 12 points respectively where f − p∗ equioscillates.
Analogous equioscillation properties hold for best rational, CF and Padé approxima-
tions [50].

Theorem 2.1 can be generalized for approximations that satisfy the “Haar condi-
tion” [37, p. 77], of which polynomials are a special case. This allows us to look for
best approximations in other sets of functions, for example trigonometric polynomi-
als, which are the ones used for the Parks-McClellan algorithm. This paper works
only with polynomials, but we believe that our methods can be carried over to the
trigonometric case.

The second theorem, proved by de la Vallée Poussin in 1910 [17], establishes an
inequality between the alternating error of a trial polynomial and the error of the best
approximation [11, p. 77], [37, Theorem 7.7].

Theorem 2.2 (de la Vallée Poussin) Let p ∈ Pn and {yi}n+1
i=0 be a set of n+2 distinct

points in I such that sign(f (yi) − p(yi)) = λσi , i = 0, . . . , n + 1, with σi and λ

defined as in Theorem 2.1. Then, for every q ∈ Pn,

min
i

|f (yi) − p(yi)| ≤ max
i

|f (yi) − q(yi)|, (2.2)

and in particular,

min
i

|f (yi) − p(yi)| ≤ ‖f − p∗‖ ≤ ‖f − p‖. (2.3)

Theorem 2.2 asserts that a polynomial p ∈ Pn whose error oscillates n + 2 times
is “near-best” in the sense that

‖f − p‖ ≤ C‖f − p∗‖, C = ‖f − p‖
mini |f (yi) − p(yi)| ≥ 1. (2.4)

The Remez algorithm constructs a sequence of trial references {Ak} and trial polyno-
mials {pk} that satisfy this alternation condition in such a way that C → 1 as k → ∞.
At the kth step the algorithm starts with a trial reference Ak and then computes a
polynomial pk such that

f (xi) − pk(xi) = σihk, xi ∈ Ak, (2.5)

where hk is the leveled error (positive or negative), defined as hk := f (xi) − pk(xi)

for all xi ∈ Ak . Then, a new trial reference Ak+1 is computed from the extrema of
f − pk in such a way that |hk+1| ≥ |hk| is guaranteed. This monotonic increase of
the leveled error is the key observation in showing that the algorithm converges to p∗
[37, Theorem 9.3]. In Sect. 2.1 we explain how to compute a trial polynomial and
leveled error from a given trial reference, and in Sect. 2.2 we show how to adjust the
trial reference from the error of the trial polynomial.

726 R. Pachón, L.N. Trefethen

2.1 From a trial reference to a trial polynomial

We let {φj ; j = 0,1, . . . , n} be a basis of Pn and express the elements of the latter in
the form

p(x) =
n∑

j=0

cjφj (x).

A continuous function f and a set {xi}n+1
i=0 of n + 2 points uniquely determine a

polynomial p and a leveled error h such that (2.5) is satisfied. The conditions (2.5)
amount to a linear system of n+ 2 equations in n+ 2 unknowns: n+ 1 parameters to
describe the polynomial, plus the unknown h:

⎛

⎜⎜⎜⎜⎜⎝

φ0(x0) φ1(x0) · · · φn(x0)

φ0(x1) φ1(x1) · · · φn(x1)
...

...
...

φ0(xn) φ1(xn) · · · φn(xn)

φ0(xn+1) φ1(xn+1) · · · φn(xn+1)

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

c0
c1
...

cn

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎝

f (x0) + σ0h

f (x1) + σ1h
...

f (xn) + σnh

f (xn+1) + σn+1h

⎞

⎟⎟⎟⎟⎟⎠
. (2.6)

We emphasize that this is the classical formulation. In the next section we shall
recommend different methods for representing p and determining h.

2.2 From a trial polynomial to a new trial reference

Suppose that for a trial reference Ak there is a polynomial pk such that f (xi) −
pk(xi) = σihk but |hk| < ‖f − p∗‖. The goal is to obtain a new reference Ak+1 =
{yi}n+1

i=0 where the error of the polynomial pk+1 ∈ Pn equioscillates with leveled
error |hk+1| > |hk|. The key to finding the new reference is Theorem 2.2.

Since f (yi) − pk+1(yi) will equioscillate, the right side of (2.2) will be equal to
hk+1. Thus, to be sure of increasing the leveled error, the replacement of Ak by Ak+1
must satisfy

|hk| ≤ min
i

|f (yi) − pk(yi)|, yi ∈ Ak+1. (2.7)

That is, the polynomial pk must oscillate on Ak+1 (but not necessarily equioscillate)
with amplitude greater than or equal to |hk|. If condition (2.7) is satisfied, it follows
from (2.2) that the leveled error increases from pk to pk+1.

Remez proposed two strategies to achieve this. One is to move one of the points
of Ak to the abscissa of the global extremum while keeping the sign alternation; the
other is to replace all the points of Ak by n + 2 oscillating local extrema satisfying
(2.7) and to include in Ak+1 the abscissa of the global extremum. These strategies are
known as the first and second Remez algorithms, respectively.

More specifically, the first Remez algorithm constructs Ak+1 by exchanging a
point xold ∈ Ak with the global extremum xnew of f − pk in such a way that the
alternation of signs of the error is maintained. If x0 < xnew < xn+1, then xold is the
closest point in Ak for which the error has the same sign as at xnew. If xnew < x0 and
the signs of xnew and x0 coincide then xold is x0; if xnew < x0 but the signs of xnew
and x0 are different, then xold is xn+1. Similar rules apply if xnew > xn+1.

Barycentric-Remez algorithms for best polynomial approximation 727

The second Remez algorithm constructs the set Ãk+1 of points in Ak and local ex-
trema xr of f − pk such that |(f − pk)(xr)| > |hk|. Then, for each subset of Ãk+1 of
consecutive points with the same sign it keeps only one for which |f −pk| attains the
largest value. From the resulting set, Ak+1 is obtained by choosing n+ 2 consecutive
points that include the global extremum of f − pk .

Assuming f is twice differentiable, the error of the Remez algorithm decays at a
quadratic rate if we measure error at every n + 2 steps in the case of the first Remez
algorithm [37, Sect. 9.4] and at every step in the case of the second [53].

3 The new Remez algorithm and its chebfun implementation

We present our algorithm in six subsections. Each of the first five focuses on one of
the main features that distinguishes it from previous work, and in the last one we
discuss the possibility of using CF approximation for the initial guess.

3.1 Formulation within the chebfun system

A major fact about this work is that our algorithm is not a standalone product
but part of the chebfun system, which was introduced in its original form by
Battles and Trefethen in 2004 [4] and has subsequently developed into a widely
capable software system for computing with functions of one real variable. The
principle of the chebfun system is that it works with functions themselves rather
than with numbers, operating upon them with overloads of familiar Matlab com-
mands for dealing with vectors such as sum, abs, max or diff. Each chebfun
is represented by one or more polynomial interpolants through Chebyshev points
on subintervals, enabling the system to compute rapidly and to nearly machine
precision with almost any piecewise smooth function on a bounded interval. See
http://www.comlab.ox.ac.uk/chebfun for more information.

From a user’s point of view, this framework changes the nature of possible Remez
explorations fundamentally. The command remez in Fig. 2, included in the chebfun
system since version 2.0501, produces the chebfun p of the best polynomial approx-
imation of degree n of a chebfun f. A single line of code like

>> f = chebfun(’tanh(10*x)’); plot(f-remez(f,50))

produces an equioscillating error curve in a fraction of a second. It is an easy matter
quickly to compare best approximants on the fly of dozens of different degrees, or of
dozens of functions.

The generality of the function representation in the chebfun system makes it pos-
sible to compute best approximations to even very complicated functions. The output
p is of course a polynomial, and it is interesting that in this framework the input
f is also a polynomial or a piecewise polynomial. This fact of implementation has
important consequences for our method of finding extrema discussed in Sect. 3.5.

728 R. Pachón, L.N. Trefethen

function [p,err] = remez(f,n); % compute deg n BA to chebfun f
iter = 1; delta = 1; deltamin = delta;
[a,b] = domain(f);
xk = chebpts(n+2); xo = xk; % initial reference
sigma = (-1).^[0:n+1]’; % alternating signs
normf = norm(f);
while (delta/normf > 1e-14) & iter <= 20
fk = feval(f,xk); % function values
w = bary_weights(xk); % compute barycentric weights
h = (w’*fk)/(w’*sigma); % levelled reference error
if h==0, h = 1e-19; end % perturb error if necessary
pk = fk - h*sigma; % polynomial vals in the
p=chebfun(@(x)bary(x,pk,xk,w),n+1); % reference chebfun of trial
e = f - p; % polynomial chebfun of the
[xk,err] = exchange(xk,e,h,2); % error replace reference
if err/normf > 1e5 % if overshoot, recompute with

[xk,err] = exchange(xo,e,h,1); % one-point exchange
end
xo = xk;
delta = err - abs(h); % stopping value
if delta < deltamin, % store poly with minimal norm

deltamin = delta;
pmin = p; errmin = err;

end
iter = iter + 1;

end
p = pmin; err = errmin;

Fig. 2 Code of the Remez algorithm in the chebfun system (slightly but only slightly simplified). The
input arguments are a chebfun f and the degree n of the polynomial to be computed and the output
arguments are a chebfun p of the best polynomial approximation to f and the error err

3.2 Barycentric Lagrange representation of polynomials

The choice of basis {φj } for Pn is crucial in the numerical solution of (2.6) [18]
for the computation of the trial polynomials. The monomial basis, for example, is
a terrible choice: the condition number of the resulting Vandermonde matrix grows
exponentially in general [22, p. 417]. The use of Chebyshev polynomials will usually
improve matters, but can still result in an ill-conditioned system for arbitrary sets of
points [1].

A much better choice, however, is a Lagrange basis: Given a set {x̃j }nj=0 of n + 1
prescribed interpolation points, our representation of p(x), x ∈ I , is mathematically
equivalent to

p(x) =
n∑

j=0

p(x̃j)�j (x), �j =
∏n

ν=0,ν 	=j (x − x̃ν)∏n
ν=0,ν 	=j (x̃j − x̃ν)

. (3.1)

Notice that

�j (x̃i) =
{

1, j = i

0, otherwise,
i, j = 0, . . . , n. (3.2)

Notice also that we are now proposing the use of a basis that is not prescribed in
advance but depends on the data.

Barycentric-Remez algorithms for best polynomial approximation 729

Lagrange interpolation is a fundamental tool in numerical analysis whose suc-
cess depends on two key choices: the interpolating nodes, and the formula used for
implementation. It is well known that the node distributions for which Lagrange in-
terpolation is well conditioned have asymptotic density proportional to (1 − s2)−1/2,
if s is a rescaling of x to [−1,1] [51, Chap. 5], such as the set of Chebyshev points

x̃j = 1

2
(a + b) + 1

2
(b − a) cos

(jπ

n

)
, j = 0,1, . . . , n. (3.3)

Besides being ill-conditioned for certain arrays of grid points, Lagrange interpola-
tion also suffers from numerical instability when implemented improperly. Thus it is
crucial that we actually work with (3.1) through the representation of the barycentric
formula

p(x) =
∑n

j=0
w̃j

x−x̃j
p(x̃j)

∑n
j=0

w̃j

x−x̃j

, (3.4)

where

w̃j =
∏

ν 	=j

(x̃j − x̃ν)
−1, j = 0, . . . , n,

are the barycentric weights, a formulation that is stable and fully effective for the
evaluation of high-degree polynomials. In particular, Higham has shown that (3.4) is
forward stable for point sets with small Lebesgue constant, such as Chebyshev points
[23]. For a review of barycentric interpolation formulas, see [6].

3.3 Analytic formula for the leveled error

The set of Lagrangian nodes that we use at a fixed step in the barycentric-Remez
algorithm is a subset of n + 1 points from the (n + 2)-point trial reference A =
{xi}n+1

i=0 omitting, say, the point xj . From (3.2) it follows that the matrix of (2.6) is the
(n + 1) × (n + 1) identity except with an additional j th row inserted whose entries
are the values of the various Lagrange functions at the particular point xj . Discarding
this row, we end up with the system

p(xi) = f (xi) + σih, i = 0, . . . , n + 1, i 	= j. (3.5)

The formula (3.9) that we derive below allows one to compute the leveled error h

independently of the values p(xi). Hence, we can compute the values p(xi) in (3.5)
which in turn are used to construct the chebfun of the trial polynomial p with the
barycentric formula. Since the barycentric-Remez algorithm does not have to solve
system (2.6) but just to compute the values p(xi) from (3.5), ill-conditioning is not
a problem as it may result when working with other basis for Pn, even Chebyshev
polynomials.

For any basis {φj } of Pn it can be shown that h can be found independently
of the coefficients {cj } [37, Theorem 9.1]. For the Lagrange basis we can compute
explicitly a closed expression without the values p(xi). Consider the discarded row

730 R. Pachón, L.N. Trefethen

of the system (3.5), p(xj) + σjh = f (xj), and use Lagrange interpolation on the
remaining set of n + 1 points to compute p(xj),

n+1∑

i=0
i 	=j

p(xi)�
j
i (xj) + σjh = f (xj), xj ∈ A, j = 0, . . . , n + 1, j 	= i, (3.6)

where �
j
i is the ith element of the Lagrange basis that uses A as the Lagrange nodes,

except for xj ,

�
j
i (x) :=

n+1∏

ν=0
ν 	=i,j

(x − xν)

(xi − xν)
, xi, xν ∈ A.

Notice that

�
j
i (xj) =

n+1∏

ν=0
ν 	=i,j

(xj − xν)

(xi − xν)
=

∏
ν 	=j (xj − xν)∏
ν 	=i (xi − xν)

· xi − xj

xj − xi

= − wi

wj

, (3.7)

where {wi} are the barycentric weights we would get if we considered all the points
A as the Lagrange nodes, i.e.,

wj =
n+1∏

ν=0
ν 	=j

(xj − xν)
−1, xj , xν ∈ A. (3.8)

Inserting (3.7) in (3.6), we obtain

−
n+1∑

i=0
i 	=j

p(xi)wi + σjwjh = f (xj)wj .

Summing over j , and noting that
∑n+1

j=0 p(xj)wj = 0, we obtain the compact formula
that is used to compute the leveled error in our algorithm,

h =
∑n+1

j=0wjf (xj)
∑n+1

j=0σjwj

. (3.9)

It follows from (3.5) and (3.6) that by using this value of h, the trial polynomial p

of degree n coincides with the polynomial interpolant through the n + 2-point trial
reference A. The barycentric weights of this polynomial are (3.8), the ones used to
compute h in (3.9). In code listing of Fig. 2, the chebfun of the trial polynomial is
computed in the line

>> p = chebfun(@(x) bary(x,pk,xk,w), n+1).

Barycentric-Remez algorithms for best polynomial approximation 731

The chebfun command bary computes the interpolant at the point x using the
barycentric formula for the vectors pk, xk and w of length n + 2 with values
f (xi) − σih, the trial reference A = {xi}n+1

i=0 , and the barycentric weights (3.8), re-
spectively.

3.4 Scaling barycentric weights by capacity

Our barycentric-Remez algorithm can not only compute p∗ with very high degrees
but also allows one to compute best approximations in the interval [−106,106] as
easily as in the interval [−1,1]. These features require the appropriate scaling of the
barycentric weights wj .

The scale of wj in (3.8) for an arbitrary set of n nodes in an interval of length 4C

grows at least at the rate C−n, where the value C is known as the logarithmic capacity
of the interval [6, p. 509]. If the length of the interval is 4, the standard formula
for the barycentric weights can be used directly, even for very large n. However,
when working with high degrees in intervals where the logarithmic capacity is far
from one (for example when n > 500 and I = [−1,1]), the large values of wj will
cause overflow or underflow. To eliminate this risk, we multiply each difference in
(3.8) by C−1, scaling the barycentric weights roughly to size O(1) and making them
representable in floating point arithmetic.

When n is even larger (for example when n > 5000 and I = [−1,1]), the com-
putation of wj encounters a new problem: The partial products formed along the
way when the products are evaluated, for example from left to right, may overflow or
underflow. One solution to this problem would be to order the partial products to com-
pensate, e.g. by a discrete Leja ordering [49]. However in this application we are able
to use a simpler solution: rather than multiplying factors, we sum their logarithms.
Following these two observations, the barycentric weights (3.8) can be equivalently
represented as

wj =
∏

ν 	=j sign(xj − xν)

exp(n logC−1 + ∑
ν 	=j log |xj − xν |) , j = 0, . . . , n.

This is the formula used by the chebfun command bary_weights to compute
these values in an arbitrary interval [a, b] of length 4C.

3.5 Location of extrema by recursive Chebyshev rootfinding

The problem of updating the trial reference, as explained in Sect. 2.2, is one of opti-
mization: on the error function of the trial polynomial pk , find the global extremum
or the alternating local extrema. In the context of Remez algorithms, a standard tech-
nique to compute these extrema [16] consists of constructing a parabola for each node
xk in the reference that interpolates the error at xk and two other points. The vertex
of the parabola is then exchanged with the lowest of the three values and the process
starts again. Golub and Smith [19], for example, use this strategy in their Remez al-
gorithm. Though they claim that the old nodes in the reference provide a good initial
guess for the extrema, they acknowledge the possibility that the parabola method may
not yield acceptable values, in which case they switch to a crude search method. They

732 R. Pachón, L.N. Trefethen

function [xk,norme] = exchange(xk,e,h,method)
rr = [a; roots(diff(e)); b]; % critical pts of the error
if method == 1 % one-point exchange

[tmp,pos] = max(abs(feval(e,rr))); pos = pos(1);
else % full exchange

pos = find(abs(feval(e,rr))>=abs(h)); % vals above leveled error
end
[r,m] = sort([rr(pos); xk]);
er = [feval(e,rr(pos));(-1).^(0:length(xk)-1)’*h];
er = er(m);
s = r(1); es = er(1); % pts and vals to be kept
for i = 2:length(r)
if sign(er(i)) == sign(es(end)) &... % from adjacent pts w/ same

abs(er(i))>abs(es(end)) % sign keep the one w/ largest
s(end) = r(i); es(end) = er(i); % val

elseif sign(er(i)) ~= sign(es(end)) % if sign changes, concatenate
s = [s; r(i)]; es = [es; er(i)]; % pts and vals

end
end
[norme,idx] = max(abs(es)); % choose n+2 consecutive pts
d = max(idx-length(xk)+1,1); % that include max of error
xk = s(d:d+length(xk)-1);

Fig. 3 Code of the exchange algorithm in the chebfun system (again slightly simplified). The input argu-
ments are a column vector xk with the trial reference Ak , the chebfun e of the error f − pk , the leveled
error h and a number method, with values 1 or 2 prescribing the use of the first or the second Remez
algorithm respectively. The output arguments are the modified vector xkwith the new trial reference Ak+1
and the norm norme of the new associated error

write “most of the programming effort is involved in the locating the extrema of the
error function ε(x)” [19].

In the chebfun system this step is handled completely differently. One of the main
features in chebfun is the very efficient root finder roots, originally implemented
by Battles [3]. Finding the roots of a smooth chebfun is equivalent to locating the
roots of a polynomial in its Chebyshev form, which in turn can be done by comput-
ing the eigenvalues of a “colleague” matrix, the elements of which are Chebyshev
coefficients. This method is well-conditioned and was discovered independently by
Specht [46] and Good [20].

Although this strategy benefits from translating the problem to an eigenvalue prob-
lem, for which very robust and fast algorithms exist, it is preferred to work with
low-degree matrices arising from low-degree polynomials. Following the key idea by
Boyd in [9], the roots command in chebfun recursively splits the polynomial into
smaller subintervals until pieces of degree less or equal to one hundred are obtained.
Then, the roots of each piece are computed as described above and collected with the
roots of all the other pieces. For piecewise smooth chebfuns the strategy is the same,
computing the roots of every smooth part and bookkeeping possible roots at break-
points [35]. The subfunction exchange in Fig. 3 replaces a trial reference using the
command roots and the rules presented in Sect. 2.2.

In the chebfun system, locating the global extremum of the error function requires
the same computational effort as locating all the local extrema, both of them using
the roots command. Hence, our implementation of the second Remez algorithm is
usually much faster than that of the first algorithm since the later clearly needs many

Barycentric-Remez algorithms for best polynomial approximation 733

more iterations. However, we have seen that for certain functions and values of n, one
of the steps in the second Remez algorithm constructs a trial polynomial with a very
large extremum, located usually near the endpoints. The large norm of the polynomial
introduces a very large error in h, breaking the computation. A simple way to solve
this is to reverse the last step and recompute the trial reference but using the one-
point exchange of the first Remez algorithm. We have seen in our experiments that
this strategy usually solves the problem.

3.6 CF approximation for initial guess

Since the Remez algorithm is nonlinear, the question arises as to a suitable initial
guess: an initial choice of the reference xk . One interesting possibility here is to start
by computing a near-best approximation to f by the Carathéodory-Fejer (CF) method
and derive xk from this. The CF method, based on the singular value analysis of a
Hankel matrix of Chebyshev coefficients, goes back to 1982 [21] and is implemented
in a command cf in the chebfun system, so such a variation is easy to implement.
Since the CF method is not iterative apart from the singular value computation, it is
up to 100 times faster than the Remez computation.

For smooth functions f and values of n bigger than 1 or 2, CF approximants are
often so close to best approximants that there may be no point in executing the Remez
algorithm at all. In the remez code, however, we have decided against using the CF
method to generate an initial guess. Instead we rely on the initial guess that has been
the standard choice throughout the history of the Remez algorithm: the Chebyshev
points (3.3). This choice ensures that the first step of the process executes correctly
and that only between 5 and 10 Remez steps are typically needed before the difference
‖f − pk‖ − |hk| becomes sufficiently small, so any improvement from introducing a
more complicated CF initial guess would at best be rather modest.

Notice that if h0 is below machine precision, the error will not equioscillate on
this initial reference and all the values p(xi) will be close to zero. However the next
reference can still be computed by following the exchange rules of the second Remez
algorithm as explained in Sect. 2.2.

4 Numerical experiments

We can use the function remez to easily compute best polynomial approximations
in the chebfun system. As an illustration, we use it to compute p∗ ∈ P10 for the
functions in Table 1. Numbers are given to 14 digits in the table to aid readers who
may wish to make comparisons with our results. The approximations are plotted in
Fig. 4.

Table 1 also includes the error of the polynomial interpolant p0 through 11 Cheby-
shev points, which served as the initial trial polynomial for the Remez algorithm, and
the error of the best approximation p∗. Although the former is obviously always
larger than the later, we can see in these examples that the improvement due to the
Remez algorithm is less than a factor of three, and in general, for any continuous

734 R. Pachón, L.N. Trefethen

Table 1 Best approximation errors for nine functions by polynomials of degree 10

i fi ‖fi − p0‖ ‖fi − p∗‖

1 tanh(x + 0.5) − tanh(x − 0.5) 0.00000058780531 0.00000030009195

2 sin(exp(x)) 0.00000386118470 0.00000178623400

3
√

x + 1 0.04212512276261 0.01978007008380

4
√|x − 0.1| 0.30512512446096 0.11467954016268

5 1 − sin(5|x − 0.5|) 0.40947166876230 0.14320591977421

6 min{sech(3 sin(10x)), sin(9x)} 0.71216404197963 0.33561414233366

7 max{sin(20x), exp(x − 1)} 0.77453305461326 0.38723296760148

8 sech(10(0.5x + 0.3))2+ 1.08706818322313 0.49987078860783

sech(100(0.5x + 0.1))4+
sech(1000(0.5x − 0.1))6

9 log(1.0001 + x) 2.98370118052234 1.40439492981387

Fig. 4 Best polynomial approximations of degree 10 (thin lines) to the functions in Table 1 (bold lines)

function and n = 10, it will always be less than a factor of 3.47. This is a conse-
quence of the fact that interpolants in n Chebyshev points are “near best” as in (2.4)
with C = 2 + 2

π
logn [10].

Barycentric-Remez algorithms for best polynomial approximation 735

How large can we make n when computing p∗ ∈ Pn for a given continuous func-
tion? The answer has varied with the years. In one of the papers that introduced his
algorithm in 1934, Remez gave the polynomial coefficients of p∗ for f (x) = |x| for
n = 5,7,9,11 [39]. Twenty-five years later, Stiefel [48], Curtis and Frank [14] and
Murnaghan and Wrench [32] applied different techniques to compute best approx-
imations of sin−1 x, tan−1 x, logx, 2x and |x5| by polynomials of degrees varying
between 2 and 18.

The first computer programs for uniform approximation appeared in the 1960s,
and included a ALGOL code by Golub and Smith [19] and FORTRAN codes by Bar-
rodale and Phillips [2], and by Simpson [45] based on Schmitt’s algorithm [44]. They
have been used, for example, for Chebyshev curve fitting with n > 20. More recently,
Le Bailly and Thiran [25] reported the computation of best approximants of degrees
up to 64 as a step to obtaining best approximants on the unit circle in the complex
plane. And higher degree approximations have been computed for particular kinds of
functions. Most remarkably for its era, McClellan and Parks [28] comment on experi-
ments they did thirty years ago in their work with Rabiner [29] involving polynomials
of degree about 500 in the context of filter design. Rabiner, at Bell Labs, had some
powerful computers to work with:

“From our perspective at Rice, it seemed that Larry wanted to set records for
the longest optimal filter ever designed. One day we received a printout of the
coefficients of a length-1401 filter; this probably would have consumed several
days of CPU time on our batch machine at Rice.”

In this section we report computations of best polynomial approximations with n

in the hundreds and thousands in seconds or at most minutes, using the barycentric-
Remez algorithm. Compared to other implementations of the Remez algorithm where
the construction of the system (2.6) would not be feasible, for example using Cheby-
shev polynomials as the basis for Pn, the barycentric-Remez algorithm never has
conditioning problems and allows one to make experiments of these very high de-
grees.

A collection of results known as the Jackson theorems establish bounds for the
error of best polynomial approximation as n increases in terms of the smoothness
of f . For example, if f satisfies the Lipschitz condition |f (x1)−f (x2)| ≤ C|x1 −x2|,
x1, x2 ∈ [−1,1], then the approximation error is bounded by [37, Theorem 16.5]

‖f − p∗‖ ≤ Cπ

2(n + 1)
. (4.1)

The functions f5, f6, f7 and f8 in Table 1 (among others) are Lipschitz continuous.
Using the chebfun command norm(diff(f),inf) we calculated the Lipschitz
coefficients, and Fig. 5 shows the best approximation errors for n between 1 and
10,000 and the bound (4.1) for f5 and f8. The large error of the best approximation
to f8 in Fig. 5 is consistent with the large Lipschitz constant C8 ≈ 7 × 102.

736 R. Pachón, L.N. Trefethen

Fig. 5 Error of best polynomial approximations for functions f5 and f8 (bold lines) compared with the
Jackson bounds (4.1) for Lipschitz continuous functions (thin lines). The errors for f6 and f7, not shown,
follow closely the error for f5

For functions that do not satisfy a Lipschitz condition, one can establish the bound
[37, Theorem 16.5]

‖f − p∗‖ ≤ 3

2
ωf

(π

n + 1

)
, (4.2)

where ωf is the modulus of continuity of f , i.e., ωf (δ) = sup|x1−x2|<δ |f (x1) −
f (x2)|, x1, x2 ∈ [−1,1]. For both the functions f3 and f4, this bound becomes
3
2

√
π/(n + 1), and in Fig. 6 we compare this quantity with the best approximation

errors for n from 1 to 1,000.
Remez used his algorithm to compute the best approximations to |x| in [−1,1]

by polynomials of degrees up to 11 with an accuracy of 10−5. As reported in one of
his 1934 papers [39], the computations were carried out by three female students of
the University of Kiev and used the equivalence between best approximants to |x|
and

√
x. Since |x| is an even continuous function, the errors for the best polynomial

approximation of degree n and n + 1 are the same, so only odd degrees were com-
puted. Using the overloaded command poly(p), where p is the chebfun of the best
polynomial approximation, we can check the coefficients published in that paper. For
example, with n = 11, it takes about 0.1 seconds to find that the coefficients ck in the
monomial basis {xk} are:

Barycentric-Remez algorithms for best polynomial approximation 737

k ck (Remez [39]) ck (chebfun)

0 0.027837 0.02784511855
2 4.753770 4.75365049278
4 −20.646839 −20.64625015816
6 47.776685 47.77533460523
8 −49.593272 −49.59209097049

10 18.709656 18.70935603064

Evidently Remez’s coefficients were accurate to about 4 places.
For this problem of best approximation of |x|, much sharper estimates are avail-

able than the general bound (4.1). Bernstein [5] proved that there exists a positive
constant β such that

lim
n→∞n‖|x| − p∗‖ = β,

and from numerical experiments he conjectured that

β = 1

2
√

π
= 0.2820947917

Fig. 6 Error of best polynomial approximations for functions f3 and f4 (bold lines) compared with
Jackson bound (4.2) for continuous functions (thin lines). For f3 the bound is too pessimistic, since (4.2)
does not take into account the difference between singularities of f at the endpoints and in the interior

738 R. Pachón, L.N. Trefethen

Fig. 7 Computed values of n‖|x| − p∗‖ (solid) and Bernstein’s conjectured number, β = 1
2
√

π
(dashed)

for values of n up to 10,000. As shown by Varga and Carpenter, Bernstein’s conjecture was false

For seventy years this conjecture was open, until Varga and Carpenter [52] proved
that it was false and confirmed this with extensive numerical computations. Among
their experiments and results, which included sharper lower and upper bounds for
β , they computed n‖|x| − p∗‖ for n up to 104, accurate to nearly 95 decimal
places.

The method of Varga and Carpenter requires the use of extended precision. Using
the barycentric-Remez algorithm, we were able to compute the same approximations
in 30 seconds on a workstation in ordinary IEEE arithmetic, obtaining the same 52
errors as Varga and Carpenter to 15 digits. We also computed the polynomial approx-
imations for degrees up to 1,500 and confirmed the first seven of the fifty digits of β

that Varga and Carpenter computed by Richardson extrapolation:

β ≈ 0.2801694 . . .

We can compute best approximants of higher degrees using the barycentric-Remez al-
gorithm, and in Fig. 7 we compare the errors with Bernstein’s conjectured number up
to n = 10,000, illustrating further—as if further illustration were needed!—that the
conjecture was false. However, as we mentioned in Sect. 3, polynomial interpolation
in arbitrary sets of nodes, including the references in the barycentric-Remez algo-

Barycentric-Remez algorithms for best polynomial approximation 739

rithm when these are far from Chebyshev points, may not be well-conditioned. For
large n this causes (3.5) to have a significant error. In Fig. 7, the values for n > 1500
are accurate to 4 decimal places.

5 Rational approximations

There are also Remez algorithms for best approximation by rational functions of type
(m,n), that is, functions of the form r = p/q where p and q are polynomials of
degrees less than or equal to m and n respectively. The error equioscillates on a refer-
ence with m+n+2−δ points, where δ is a number known as the defect of f , and a de
la Vallée Poussin inequality also holds. A Remez algorithm involves the computation
of trial references and trial rational functions much as for the polynomial case. The
step of obtaining a trial reference of m + n + 2 points (for the non-degenerate case)
from the trial rational function is unaffected and requires one to find the global ex-
tremum or the alternating local extrema of the error function. Chebfun, again, makes
this step straightforward. However, the computation of the trial rational function from
the trial reference is more complex. A barycentric algorithm for this computation will
be presented in a forthcoming paper.

Acknowledgements We are grateful to Toby Driscoll, Michael Floater, Nick Hale, Michael Overton,
Rodrigo Platte and Ian Sobey for valuable comments and suggestions.

References

1. Almacany, M., Dunham, C., Williams, J.: Discrete Chebyshev approximation by interpolating ratio-
nals. IMA J. Numer. Anal. 4, 467–477 (1984)

2. Barrodale, I., Phillips, C.: Solution of an overdetermined system of linear equations in the Chebyshev
norm. ACM Trans. Math. Softw. 1, 264–270 (1975)

3. Battles, Z.: Numerical linear algebra for continuous functions. PhD thesis, University of Oxford
(2005)

4. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM
J. Sci. Comput. 25(5), 1743–1770 (2004)

5. Bernstein, S.: Sur la meilleure approximation de |x| par des polynomes de degrés donnés. Acta Math.
37, 1–57 (1914)

6. Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)
7. Boothroyd, J.: Algorithm 318: Chebyschev curve-fit. Commun. ACM 10(12), 801–803 (1967)
8. Borel, E.: Leçons sur les fonctions de variables réelles. Gauthier-Villars, Paris (1905)
9. Boyd, J.A.: Computing zeros on a real interval through Chebyshev expansion and polynomial

rootfinding. SIAM J. Numer. Anal. 40(5), 1666–1682 (2002)
10. Brutman, L.: Lebesgue functions for polynomial interpolation—a survey. Ann. Numer. Math. 4, 111–

128 (1997)
11. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)
12. Cody, W.J.: The FUNPACK package of special function subroutines. ACM Trans. Math. Softw. 1(1),

13–25 (1975)
13. Cody, W.J.: Algorithm 715: SPECFUN—a portable FORTRAN package of special function routines

and test drivers. ACM Trans. Math. Softw. 19(1), 22–30 (1993)
14. Curtis, P.C., Frank, W.L.: An algorithm for the determination of the polynomial of best minimax

approximation to a function defined on a finite point set. J. ACM 6, 395–404 (1959)
15. Davis, P.J.: Interpolation and Approximation. Dover, New York (1975)

740 R. Pachón, L.N. Trefethen

16. de Boor, C., Rice, J.R.: Extremal polynomials with application to Richardson iteration for indefinite
linear systems. SIAM J. Sci. Stat. Comput. 3, 47–57 (1982)

17. de la Vallée Poussin, C.J.: Sur les polynomes d’approximation et la représentation approchée d’un
angle. Acad. R. Belg., Bull. Cl. Sci. 12 (1910)

18. Dunham, C.B.: Choice of basis for Chebyshev approximation. ACM Trans. Math. Softw. 8(1), 21–25
(1982)

19. Golub, G.H., Smith, L.B.: Algorithm 414: Chebyshev approximation of continuous functions by a
Chebyshev system of functions. Commun. ACM 14(11), 737–746 (1971)

20. Good, I.J.: The colleague matrix, a Chebyshev analogue of the companion matrix. Q. J. Math. 12,
61–68 (1961)

21. Gutknecht, M.H., Trefethen, L.N.: Real polynomial Chebyshev approximation by the Carathéodory-
Fejér method. SIAM J. Numer. Anal. 19, 358–371 (1982)

22. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (2002)
23. Higham, N.J.: The numerical stability of barycentric Lagrange interpolation. IMA J. Numer. Anal.

24, 547–556 (2004)
24. Kaufman, Jr., E.H., Leeming, D.J., Taylor, G.D.: Uniform rational approximation by differential cor-

rection and Remes-differential correction. Int. J. Numer. Methods Eng. 17, 1273–1278 (1981)
25. Le Bailly, B., Thiran, J.P.: Computing complex polynomial Chebyshev approximants on the unit circle

by the real Remez algorithm. SIAM J. Numer. Anal. 36, 1858–1877 (1999)
26. Lorentz, G.G.: Approximation of Functions. Holt, Rinehart and Winston (1966)
27. MATLAB: User’s Guide. The MathWorks Inc., Natick, Massachusetts
28. McClellan, J.H., Parks, T.W.: A personal history of the Parks-McClellan algorithm. IEEE Signal

Process. Mag. 22, 82–86 (2005)
29. McClellan, J.H., Parks, T.W., Rabiner, L.R.: A computer program for designing optimum FIR linear

phase digital filters. IEEE Trans. Audio Electroacoust. 21, 506–526 (1973)
30. Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, Heidelberg

(1967)
31. Mhaskar, H.N., Pai, D.V.: Fundamentals of Approximation Theory. Narosa Publishing House, New

Delhi (2000)
32. Murnaghan, F.D., Wrench, J.W.: J.: The determination of the Chebyshev approximating polynomial

for a differentiable function. Math. Tables Aids Comput. 13, 185–193 (1959)
33. NAG: Library, Manual. The Numerical Algorithms Group, Ltd., Oxford, UK
34. Numerical Libraries, I.M.S.L.: Technical Documentation. Visual Numerics Inc., Houston
35. Pachón, R., Platte, R., Trefethen, L.N.: Piecewise smooth chebfuns. IMA J. Numer. Anal. (to appear)
36. Parks, T.W., McClellan, J.H.: Chebyshev approximation for nonrecursive digital filters with linear

phase. IEEE Trans. Circuit Theory 19, 189–194 (1972)
37. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge

(1981)
38. Rabinowitz, P.: Applications of linear programming to numerical analysis. SIAM Rev. 10, 121–159

(1968)
39. Remes, E.: Sur le calcul effectif des polynomes d’approximation de Tchebychef. C. R. Acad. Sci.

199, 337–340 (1934)
40. Remes, E.: Sur un procédé convergent d’approximations successives pour déterminer les polynomes

d’approximation. C. R. Acad. Sci. 198, 2063–2065 (1934)
41. Remes, E.: Sur la détermination des polynomes d’approximation de degré donnée. Commun. Soc.

Math. Kharkov 10 (1934)
42. Rice, J.R.: The Approximation of Functions, vol. 1. Addison-Wesley, Reading (1964)
43. Sauer, F.W.: Algorithm 604: A FORTRAN program for the calculation of an extremal polynomial.

ACM Trans. Math. Softw. 9(3), 381–383 (1983)
44. Schmitt, H.: Algorithm 409, discrete Chebychev curve fit. Commun. ACM 14, 355–356 (1971)
45. Simpson, J.C.: Fortran translation of algorithm 409, Discrete Chebychev curve fit. ACM Trans. Math.

Softw. 2, 95–97 (1976)
46. Specht, W.: Die Lage der Nullstellen eines Polynoms, IV. Math. Nachr. 21, 201–222 (1960)
47. Steffens, K.G.: The History of Approximation Theory: From Euler to Bernstein. Birkhäuser, Boston

(2006)
48. Stiefel, E.L.: Numerical methods of Tchebycheff approximation. In: Langer, R. (ed.) On Numerical

Approximation, pp. 217–232. University of Wisconsin Press, Madison (1959)
49. Taylor, R., Totik, V.: Lebesgue constants for Leja points. IMA J. Numer. Anal. (to appear)

Barycentric-Remez algorithms for best polynomial approximation 741

50. Trefethen, L.N.: Square blocks and equioscillation in the Padé, Walsh, and CF tables. In: Graves-
Morris, P., Saff, E., Varga, R. (eds.) Rational Approximation and Interpolation. Lect. Notes in Math.,
vol. 1105. Springer, Berlin (1984)

51. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)
52. Varga, R.S., Carpenter, A.J.: On the Bernstein conjecture in approximation theory. Constr. Approx. 1,

333–348 (1985)
53. Veidinger, L.: On the numerical determination of the best approximation in the Chebyshev sense.

Numer. Math. 2, 99–105 (1960)

	Barycentric-Remez algorithms for best polynomial approximation in the chebfun system
	Abstract
	Introduction
	Classical Remez algorithm
	From a trial reference to a trial polynomial
	From a trial polynomial to a new trial reference

	The new Remez algorithm and its chebfun implementation
	Formulation within the chebfun system
	Barycentric Lagrange representation of polynomials
	Analytic formula for the leveled error
	Scaling barycentric weights by capacity
	Location of extrema by recursive Chebyshev rootfinding
	CF approximation for initial guess

	Numerical experiments
	Rational approximations
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

